Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/142/21/10.1063/1.4919548
1.
1.T. Renger, V. May, and O. Kuhn, Phys. Rep. 343, 137 (2001).
http://dx.doi.org/10.1016/s0370-1573(00)00078-8
2.
2.H. Lokstein and B. Grimm, eLS (John Wiley & Sons, 2013).
3.
3.V. Sundstrom, “Biophotonics: Spectroscopy, imaging, sensing, and manipulation,” NATO Science for Peace and Security Series B-Physics and Biophysics, edited by B. DiBartolo and J. Collins (Springer, 2011), pp. 219236.
4.
4.R. E. Blankenship, Molecular Mechanisms of Photosynthesis, 2nd ed. (Wiley-Blackwell, Oxford, UK, 2014).
5.
5.T. Polívka and V. Sundström, Chem. Rev. 104, 2021 (2004).
http://dx.doi.org/10.1021/cr020674n
6.
6.T. Polivka and V. Sundstrom, Chem. Phys. Lett. 477, 1 (2009).
http://dx.doi.org/10.1016/j.cplett.2009.06.011
7.
7.E. E. Ostroumov, R. M. Mulvaney, R. J. Cogdell, and G. D. Scholes, Science 340, 52 (2013).
http://dx.doi.org/10.1126/science.1230106
8.
8.E. E. Ostroumov, R. M. Mulvaney, J. M. Anna, R. J. Cogdell, and G. D. Scholes, J. Phys. Chem. B 117, 11349 (2013).
http://dx.doi.org/10.1021/jp403028x
9.
9.P. Tavan and K. Schulten, Phys. Rev. B 36, 4337 (1987).
http://dx.doi.org/10.1103/PhysRevB.36.4337
10.
10.J. P. Zhang, T. Inaba, Y. Watanabe, and Y. Koyama, Chem. Phys. Lett. 332, 351 (2000).
http://dx.doi.org/10.1016/S0009-2614(00)01275-6
11.
11.G. Cerullo, D. Polli, G. Lanzani, S. De Silvestri, H. Hashimoto, and R. J. Cogdell, “Photosynthetic light harvesting by carotenoids: Detection of an intermediate excited state,” Science 298, 2395 (2002).
http://dx.doi.org/10.1126/science.1074685
12.
12.E. Ostroumov, M. G. Müller, C. M. Marian, M. Kleinschmidt, and A. R. Holzwarth, Phys. Rev. Lett. 103, 1 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.108302
13.
13.M. S. Marek, T. Buckup, and M. Motzkus, J. Phys. Chem. B 115, 8328 (2011).
http://dx.doi.org/10.1021/jp202753j
14.
14.M. Maiuri, D. Polli, D. Brida, L. Luer, A. M. LaFountain, M. Fuciman, R. J. Cogdell, H. A. Frank, and G. Cerullo, Phys. Chem. Chem. Phys. 14, 6312 (2012).
http://dx.doi.org/10.1039/c2cp23585d
15.
15.D. Kosumi, M. Komukai, H. Hashimoto, and M. Yoshizawa, Phys. Rev. Lett. 95, 213601 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.213601
16.
16.N. Christensson, F. Milota, A. Nemeth, J. Sperling, H. F. Kauffmann, T. Pullerits, and J. Hauer, J. Phys. Chem. B 113, 16409 (2009).
http://dx.doi.org/10.1021/jp906604j
17.
17.N. Christensson, F. Milota, A. Nemeth, I. Pugliesi, E. Riedle, J. Sperling, T. Pullerits, H. Kauffmann, and J. Hauer, J. Phys. Chem. Lett. 1, 3366 (2010).
http://dx.doi.org/10.1021/jz101409r
18.
18.M. Liebel, C. Schnedermann, and P. Kukura, Phys. Rev. Lett. 112, 198302 (2014).
http://dx.doi.org/10.1103/physrevlett.112.198302
19.
19.T. Polivka and H. A. Frank, Acc. Chem. Res. 43, 1125 (2010).
http://dx.doi.org/10.1021/ar100030m
20.
20.R. S. Knox, J. Photochem. Photobiol., B 49, 81 (1999).
http://dx.doi.org/10.1016/S1011-1344(99)00060-3
21.
21.M. Gouterman, J. Chem. Phys. 30, 1139 (1959).
http://dx.doi.org/10.1063/1.1730148
22.
22.V. N. Nemykin, R. G. Hadt, R. V. Belosludov, H. Mizuseki, and Y. Kawazoe, J. Phys. Chem. A 111, 12901 (2007).
http://dx.doi.org/10.1021/jp0759731
23.
23.T. Mancal, N. Christensson, V. Lukes, F. Milota, O. Bixner, H. F. Kauffmann, and J. Hauer, J. Phys. Chem. Lett. 3, 1497 (2012).
http://dx.doi.org/10.1021/jz300362k
24.
24.A. N. Macpherson, P. A. Liddell, D. Kuciauskas, D. Tatman, T. Gillbro, D. Gust, T. A. Moore, and A. L. Moore, J. Phys. Chem. B 106, 9424 (2002).
http://dx.doi.org/10.1021/jp0212343
25.
25.J. Savolainen, N. Dijkhuizen, R. Fanciulli, P. A. Liddell, D. Gust, T. A. Moore, A. L. Moore, J. Hauer, T. Buckup, M. Motzkus, and J. L. Herek, J. Phys. Chem. B 112, 2678 (2008).
http://dx.doi.org/10.1021/jp0757199
26.
26.T. H. P. Brotosudarmo, A. M. Collins, A. Gall, A. W. Roszak, A. T. Gardiner, R. E. Blankenship, and R. J. Cogdell, Biochem. J. 440, 51 (2011).
http://dx.doi.org/10.1042/BJ20110575
27.
27.F. Milota, C. N. Lincoln, and J. Hauer, Opt. Express 21, 15904 (2013).
http://dx.doi.org/10.1364/OE.21.015904
28.
28.N. Christensson, F. Milota, J. Hauer, J. Sperling, O. Bixner, A. Nemeth, and H. F. Kauffmann, J. Phys. Chem. B 115, 5383 (2011).
http://dx.doi.org/10.1021/jp109442b
29.
29.J. Piel, E. Riedle, L. Gundlach, R. Ernstorfer, and R. Eichberger, Opt. Lett. 31, 1289 (2006).
http://dx.doi.org/10.1364/OL.31.001289
30.
30.M. L. Cowan, J. P. Ogilvie, and R. J. D. Miller, Chem. Phys. Lett. 386, 184 (2004).
http://dx.doi.org/10.1016/j.cplett.2004.01.027
31.
31.T. Brixner, T. Mancal, I. V. Stiopkin, and G. R. Fleming, J. Chem. Phys. 121, 4221 (2004).
http://dx.doi.org/10.1063/1.1776112
32.
32.F. Milota, J. Sperling, A. Nemeth, and H. F. Kauffmann, Chem. Phys. 357, 45 (2009).
http://dx.doi.org/10.1016/j.chemphys.2008.10.015
33.
33.M. J. Tauber, R. A. Mathies, X. Y. Chen, and S. E. Bradforth, Rev. Sci. Instrum. 74, 4958 (2003).
http://dx.doi.org/10.1063/1.1614874
34.
34.S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University Press, New York, 1995).
35.
35.J. Seibt and T. Pullerits, J. Chem. Phys. 141, 114106 (2014).
http://dx.doi.org/10.1063/1.4895401
36.
36.T. Mančal, J. Dostál, J. Pšenčík, and D. Zigmantas, Can. J. Chem. 92, 135 (2014).
http://dx.doi.org/10.1139/cjc-2013-0351
37.
37.T. Brixner, T. Mančal, I. V. Stiopkin, and G. R. Fleming, J. Chem. Phys. 121, 4221 (2004).
http://dx.doi.org/10.1063/1.1776112
38.
38.S. Tretiak, C. Middleton, V. Chernyak, and S. Mukamel, J. Phys. Chem. B 104, 9540 (2000).
http://dx.doi.org/10.1021/jp001585m
39.
39.V. Perlik, C. Lincoln, F. Sanda, and J. Hauer, J. Phys. Chem. Lett. 5, 404 (2014).
http://dx.doi.org/10.1021/jz402468c
40.
40.L. D. Landau and E. Teller, Phys. Z. Sowjetunion 10, 34 (1936).
41.
41.F. Sanda, J. Phys. A: Math. Gen. 35, 5815 (2002).
http://dx.doi.org/10.1088/0305-4470/35/28/303
42.
42.T. Renger and R. A. Marcus, J. Chem. Phys. 116, 9997 (2002).
http://dx.doi.org/10.1063/1.1470200
43.
43.D. Gust, T. A. Moore, A. L. Moore, C. Devadoss, P. A. Liddell, R. Hermant, R. A. Nieman, L. J. Demanche, J. M. DeGraziano, and I. Gouni, J. Am. Chem. Soc. 114, 3590 (1992).
http://dx.doi.org/10.1021/ja00036a002
44.
44.J. Savolainen, R. Fanciulli, N. Dijkhuizen, A. L. Moore, J. Hauer, T. Buckup, M. Motzkus, and J. L. Herek, Proc. Natl. Acad. Sci. U. S. A. 105, 7641 (2008).
http://dx.doi.org/10.1073/pnas.0711927105
45.
45.M. Z. Papiz, S. M. Prince, T. Howard, R. J. Cogdell, and N. W. Isaacs, J. Mol. Biol. 326, 1523 (2003).
http://dx.doi.org/10.1016/S0022-2836(03)00024-X
46.
46.G. McDermott, S. M. Prince, A. A. Freer, A. M. Hawthornthwaite-Lawless, M. Z. Papiz, R. J. Cogdell, and N. W. Isaacs, Nature 374, 517 (1995).
http://dx.doi.org/10.1038/374517a0
47.
47.L. J. Cranston, A. W. Roszak, and R. J. Cogdell, Acta Crystallogr., Sect. F 70, 808 (2014).
http://dx.doi.org/10.1107/s2053230x14009303
48.
48.D. Polli, G. Cerullo, G. Lanzani, S. De Silvestri, H. Hashimoto, and R. J. Cogdell, Biophys. J. 90, 2486 (2006).
http://dx.doi.org/10.1529/biophysj.105.069286
49.
49.M. Sugisaki, M. Fujiwara, D. Kosumi, R. Fujii, M. Nango, R. J. Cogdell, and H. Hashimoto, Phys. Rev. B 81, 245112 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.245112
50.
50.G. Cerullo, G. Lanzani, M. Zavelani-Rossi, and S. De Silvestri, Phys. Rev. B 63, 241104(R) (2001).
http://dx.doi.org/10.1103/physrevb.63.241104
51.
51.J. Hauer, H. Skenderovic, K. L. Kompa, and M. Motzkus, Chem. Phys. Lett. 421, 523 (2006).
http://dx.doi.org/10.1016/j.cplett.2006.01.115
52.
52.H. Hashimoto, M. Sugisaki, and M. Yoshizawa, Biochim. Biophys. Acta, Bioenerg. 1847, 69 (2015).
http://dx.doi.org/10.1016/j.bbabio.2014.09.001
53.
53.R. Fujii, C. H. Chen, T. Mizoguchi, and Y. Koyama, Spectrochim. Acta, Part A 54, 727 (1998).
http://dx.doi.org/10.1016/S1386-1425(98)00011-0
54.
54.T. M. Cotton and R. P. Vanduyne, J. Am. Chem. Soc. 103, 6020 (1981).
http://dx.doi.org/10.1021/ja00410a005
55.
55.D. M. Jonas, Annu. Rev. Phys. Chem. 54, 425 (2003).
http://dx.doi.org/10.1146/annurev.physchem.54.011002.103907
56.
56.A. Nemeth, F. Milota, T. Mancal, V. Lukes, J. Hauer, H. F. Kauffmann, and J. Sperling, J. Chem. Phys. 132, 184514 (2010).
http://dx.doi.org/10.1063/1.3404404
57.
57.D. B. Turner, K. E. Wilk, P. M. G. Curmi, and G. D. Scholes, J. Phys. Chem. Lett. 2, 1904 (2011).
http://dx.doi.org/10.1021/jz200811p
58.
58.V. Butkus, D. Zigmantas, L. Valkunas, and D. Abramavicius, Chem. Phys. Lett. 545, 40 (2012).
http://dx.doi.org/10.1016/j.cplett.2012.07.014
59.
59.L. Valkunas, D. Abramavicius, and T. Mančal, Molecular Excitation Dynamics and Relaxation: Quantum Theory and Spectroscopy (Wiley-VCH Verlag, Berlin, 2013).
60.
60.N. Christensson, Y. Avlasevich, A. Yartsev, K. Mullen, T. Pascher, and T. Pullerits, J. Chem. Phys. 132, 174508 (2010).
http://dx.doi.org/10.1063/1.3404402
61.
61.P. O. Andersson, R. J. Cogdell, and T. Gillbro, Chem. Phys. 210, 195 (1996).
http://dx.doi.org/10.1016/0301-0104(96)00172-3
62.
62.H. Nagae, T. Kakitani, T. Katoh, and M. Mimuro, J. Chem. Phys. 98, 8012 (1993).
http://dx.doi.org/10.1063/1.464555
63.
63.H. van Amerongen, L. Valkunas, and R. van Grondelle, Photosynthetic Excitons (World Scientific, Singapore, 2000).
64.
64.Y. C. Cheng and R. J. Silbey, Phys. Rev. Lett. 96, 028103 (2006).
http://dx.doi.org/10.1103/physrevlett.96.028103
65.
65.A. Ishizaki and G. R. Fleming, J. Chem. Phys. 130, 234111 (2009).
http://dx.doi.org/10.1063/1.3155372
66.
66.N. Christensson, H. F. Kauffmann, T. Pullerits, and T. Mančal, J. Phys. Chem. B 116, 7449 (2012).
http://dx.doi.org/10.1021/jp304649c
67.
67.V. Tiwari, W. K. Peters, and D. M. Jonas, Proc. Natl. Acad. Sci. U. S. A. 110, 1203 (2013).
http://dx.doi.org/10.1073/pnas.1211157110
68.
68.A. W. Chin, J. Prior, R. Rosenbach, F. Caycedo-Soler, S. F. Huelga, and M. B. Plenio, Nat. Phys. 9, 113 (2013).
http://dx.doi.org/10.1038/nphys2515
69.
69.A. Chenu, N. Christensson, H. F. Kauffmann, and T. Mančal, Sci. Rep. 3, 2029 (2013).
http://dx.doi.org/10.1038/srep02029
70.
70.A. Ishizaki and G. R. Fleming, J. Chem. Phys. 130, 234110 (2009).
http://dx.doi.org/10.1063/1.3155214
71.
71.B. P. Krueger, G. D. Scholes, and G. R. Fleming, J. Phys. Chem. B 102, 5378 (1998).
http://dx.doi.org/10.1021/jp9811171
72.
72.D. Zigmantas, E. L. Read, T. Mancal, T. Brixner, A. T. Gardiner, R. J. Cogdell, and G. R. Fleming, Proc. Natl. Acad. Sci. U. S. A. 103, 12672 (2006).
http://dx.doi.org/10.1073/pnas.0602961103
73.
73.S. Mukamel and V. Rupasov, Chem. Phys. Lett. 242, 17 (1995).
http://dx.doi.org/10.1016/0009-2614(95)00648-N
74.
74.V. May and O. Kühn, Charge and Energy Transfer Dynamics in Molecular Systems (Wiley-VCH Verlag, Berlin, 2000).
75.
75.G. D. Scholes, Annu. Rev. Phys. Chem. 54, 57 (2003).
http://dx.doi.org/10.1146/annurev.physchem.54.011002.103746
76.
76.D. Beljonne, C. Curutchet, G. D. Scholes, and R. J. Silbey, J. Phys. Chem. B 113, 6583 (2009).
http://dx.doi.org/10.1021/jp900708f
77.
77.J. M. Womick and A. M. Moran, J. Phys. Chem. B 115, 1347 (2011).
http://dx.doi.org/10.1021/jp106713q
78.
78.N. Christensson, K. Žídek, N. C. M. Magdaong, A. M. LaFountain, H. A. Frank, and D. Zigmantas, J. Phys. Chem. B 117, 11209 (2013).
http://dx.doi.org/10.1021/jp401873k
79.
79.N. Christensson, F. Milota, A. Nemeth, J. Sperling, H. F. Kauffmann, T. Pullerits, and J. Hauer, J. Phys. Chem. B 113, 16409 (2009).
http://dx.doi.org/10.1021/jp906604j
80.
80.M. Sugisaki, K. Yanagi, R. Cogdell, and H. Hashimoto, Phys. Rev. B 75, 155110 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.155110
81.
81.N. Christensson, T. Polivka, A. Yartsev, and T. Pullerits, Phys. Rev. B 79, 245118 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.245118
82.
82.H. Cong, D. M. Niedzwiedzki, G. N. Gibson, A. M. LaFountain, R. M. Kelsh, A. T. Gardiner, R. J. Cogdell, and H. A. Frank, J. Phys. Chem. B 112, 10689 (2008).
http://dx.doi.org/10.1021/jp711946w
83.
83.H. Langhals, A. J. Esterbauer, A. Walter, E. Riedle, and I. Pugliesi, J. Am. Chem. Soc. 132, 16777 (2010).
http://dx.doi.org/10.1021/ja101544x
84.
84.S. M. Falke, C. A. Rozzi, D. Brida, M. Maiuri, M. Amato, E. Sommer, A. De Sio, A. Rubio, G. Cerullo, E. Molinari, and C. Lienau, Science 344, 1001 (2014).
http://dx.doi.org/10.1126/science.1249771
http://aip.metastore.ingenta.com/content/aip/journal/jcp/142/21/10.1063/1.4919548
Loading
/content/aip/journal/jcp/142/21/10.1063/1.4919548
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/142/21/10.1063/1.4919548
2015-05-04
2016-09-30

Abstract

The initial energy transfer steps in photosynthesis occur on ultrafast timescales. We analyze the carotenoid to bacteriochlorophyll energy transfer in LH2 as well as in an artificial light-harvesting dyad system by using transient grating and two-dimensional electronic spectroscopy with 10 fs time resolution. We find that Förster-type models reproduce the experimentally observed 60 fs transfer times, but overestimate coupling constants, which lead to a disagreement with both linear absorption and electronic 2D-spectra. We show that a vibronic model, which treats carotenoid vibrations on both electronic ground excited states as part of the system’s Hamiltonian, reproduces all measured quantities. Importantly, the vibronic model presented here can explain the fast energy transfer rates with only moderate coupling constants, which are in agreement with structure based calculations. Counterintuitively, the vibrational levels on the carotenoid electronic ground state play the central role in the excited state population transfer to bacteriochlorophyll; resonance between the donor-acceptor energy gap and the vibrational ground state energies is the physical basis of the ultrafast energy transfer rates in these systems.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/142/21/1.4919548.html;jsessionid=KRHus9hK1QinSwKn4s6Oni3r.x-aip-live-03?itemId=/content/aip/journal/jcp/142/21/10.1063/1.4919548&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/142/21/10.1063/1.4919548&pageURL=http://scitation.aip.org/content/aip/journal/jcp/142/21/10.1063/1.4919548'
Right1,Right2,Right3,