Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/142/21/10.1063/1.4920971
1.
1.K. C. Hester and P. G. Brewer, Annu. Rev. Mar. Sci. 1, 303 (2009).
http://dx.doi.org/10.1146/annurev.marine.010908.163824
2.
2.P. Englezos, Ind. Eng. Chem. Res. 32, 1251 (1993).
http://dx.doi.org/10.1021/ie00019a001
3.
3.E. D. Sloan and C. A. Koh, Clathrate Hydrates of Natural Gases, 3rd ed. (CRC Press, Boca Raton, FL, 2008).
4.
4.P. Scharlin and R. Battino, J. Chem. Eng. Data 40, 167 (1995).
http://dx.doi.org/10.1021/je00017a036
5.
5.S. Hirai, K. Okazaki, Y. Tabe, and K. Kawamura, Energy Convers. Manage. 38, S301 (1997).
http://dx.doi.org/10.1016/S0196-8904(96)00285-3
6.
6.C. Moon, P. C. Taylor, and P. M. Rodger, Can. J. Phys. 81, 451 (2003).
http://dx.doi.org/10.1139/p03-035
7.
7.J. Vatamanu and P. G. Kusalik, J. Phys. Chem. B 110, 15896 (2006).
http://dx.doi.org/10.1021/jp061684l
8.
8.R. W. Hawtin, D. Quigley, and P. M. Rodger, Phys. Chem. Chem. Phys. 10, 4853 (2008).
http://dx.doi.org/10.1039/b807455k
9.
9.M. R. Walsh, C. A. Koh, E. D. Sloan, A. K. Sum, and D. T. Wu, Science 326, 1095 (2009).
http://dx.doi.org/10.1126/science.1174010
10.
10.L. C. Jacobson, W. Hujo, and V. Molinero, J. Phys. Chem. B 114, 13796 (2010).
http://dx.doi.org/10.1021/jp107269q
11.
11.J. A. Ripmeester and S. Alavi, ChemPhysChem 11, 978 (2010).
http://dx.doi.org/10.1002/cphc.201000024
12.
12.D. Bai, G. Chen, X. Zhang, and W. Wang, Langmuir 27, 5961 (2011).
http://dx.doi.org/10.1021/la105088b
13.
13.B. C. Knott, V. Molinero, M. F. Doherty, and B. Peters, J. Am. Chem. Soc. 134, 19544 (2012).
http://dx.doi.org/10.1021/ja309117d
14.
14.S. Sarupria and P. G. Debenedetti, J. Phys. Chem. Lett. 3, 2942 (2012).
http://dx.doi.org/10.1021/jz3012113
15.
15.S. Liang and P. G. Kusalik, J. Phys. Chem. B 117, 1403 (2013).
http://dx.doi.org/10.1021/jp308395x
16.
16.L. A. Baez and P. Clancy, Ann. N. Y. Acad. Sci. 715, 177 (1994).
http://dx.doi.org/10.1111/j.1749-6632.1994.tb38833.x
17.
17.P. M. Rodger, Ann. N. Y. Acad. Sci. 715, 207 (1994).
http://dx.doi.org/10.1111/j.1749-6632.1994.tb38835.x
18.
18.J. S. Tse, Ann. N. Y. Acad. Sci. 715, 187 (1994).
http://dx.doi.org/10.1111/j.1749-6632.1994.tb38834.x
19.
19.N. J. English, J. K. Johnson, and C. E. Taylor, J. Chem. Phys. 123, 244503 (2005).
http://dx.doi.org/10.1063/1.2138697
20.
20.L. Y. Ding, C. Y. Geng, Y. H. Zhao, and H. Wen, Mol. Simul. 33, 1005 (2007).
http://dx.doi.org/10.1080/08927020701528524
21.
21.N. J. English and G. M. Phelan, J. Chem. Phys. 131, 074704 (2009).
http://dx.doi.org/10.1063/1.3211089
22.
22.E. M. Myshakin, H. Jiang, R. P. Warzinski, and K. D. Jordan, J. Phys. Chem. A 113, 1913 (2009).
http://dx.doi.org/10.1021/jp807208z
23.
23.S. Alavi and J. A. Ripmeester, J. Chem. Phys. 132, 144703 (2010).
http://dx.doi.org/10.1063/1.3382341
24.
24.Y. Iwai, H. Nakamura, Y. Arai, and Y. Shimoyama, Mol. Simul. 36, 246 (2010).
http://dx.doi.org/10.1080/08927020903307529
25.
25.J. Ripmeester, S. Hosseini, P. Englezos, and S. Alavi, in Canadian Unconventional Resources and International Petroleum Conference, (2010).
26.
26.S. Sarupria and P. G. Debenedetti, J. Phys. Chem. A 115, 6102 (2011).
http://dx.doi.org/10.1021/jp110868t
27.
27.V. S. Baghel, R. Kumar, and S. Roy, J. Phys. Chem. C 117, 12172 (2013).
http://dx.doi.org/10.1021/jp4023772
28.
28.N. J. English and E. T. Clarke, J. Chem. Phys. 139, 094701 (2013).
http://dx.doi.org/10.1063/1.4819269
29.
29.O. K. Forrisdahl, B. Kvamme, and A. D. J. Haymet, Mol. Phys. 89, 819 (1996).
http://dx.doi.org/10.1080/002689796173714
30.
30.J. S. Tse and D. D. Klug, J. Supramol. Chem. 2, 467 (2002).
http://dx.doi.org/10.1016/S1472-7862(03)00070-4
31.
31.J. Vatamanu and P. G. Kusalik, J. Chem. Phys. 126, 124703 (2007).
http://dx.doi.org/10.1063/1.2710263
32.
32.S. A. Bagherzadeh, P. Englezos, S. Alavi, and J. A. Ripmeester, J. Chem. Thermodyn. 44, 13 (2012).
http://dx.doi.org/10.1016/j.jct.2011.08.021
33.
33.S. A. Bagherzadeh, P. Englezos, S. Alavi, and J. A. Ripmeester, J. Phys. Chem. B 116, 3188 (2012).
http://dx.doi.org/10.1021/jp2086544
34.
34.M. Uddin and D. Coombe, J. Phys. Chem. A 118, 1971 (2014).
http://dx.doi.org/10.1021/jp410789j
35.
35.T. Yagasaki, M. Matsumoto, Y. Andoh, S. Okazaki, and H. Tanaka, J. Phys. Chem. B 118, 1900 (2014).
http://dx.doi.org/10.1021/jp412692d
36.
36.H. Nada, J. Phys. Chem. B 110, 16526 (2006).
http://dx.doi.org/10.1021/jp062182a
37.
37.M. Conde and C. Vega, J. Chem. Phys. 133, 064507 (2010).
http://dx.doi.org/10.1063/1.3466751
38.
38.Y.-T. Tung, L.-J. Chen, Y.-P. Chen, and S.-T. Lin, J. Phys. Chem. B 114, 10804 (2010).
http://dx.doi.org/10.1021/jp102874s
39.
39.Y. T. Tung, L. J. Chen, Y. P. Chen, and S. T. Lin, J. Phys. Chem. C 115, 7504 (2011).
http://dx.doi.org/10.1021/jp112205x
40.
40.Y.-T. Tung, L.-J. Chen, Y.-P. Chen, and S.-T. Lin, J. Phys. Chem. B 116, 14115 (2012).
http://dx.doi.org/10.1021/jp308224v
41.
41.S. Liang and P. G. Kusalik, J. Phys. Chem. B 114, 9563 (2010).
http://dx.doi.org/10.1021/jp102584d
42.
42.S. A. Bagherzadeh, S. Alavi, J. A. Ripmeester, and P. Englezos, Fluid Phase Equilib. 358, 114 (2013).
http://dx.doi.org/10.1016/j.fluid.2013.08.017
43.
43.K. Yan, X. Li, Z. Chen, B. Li, and C. Xu, Mol. Simul. 39, 251 (2013).
http://dx.doi.org/10.1080/08927022.2012.718437
44.
44.S. Liang and P. G. Kusalik, Chem. Sci. 2, 1286 (2011).
http://dx.doi.org/10.1039/c1sc00021g
45.
45.X. H. Zhang, A. Khan, and W. A. Ducker, Phys. Rev. Lett. 98, 136101 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.136101
46.
46.K. Ohgaki, N. Q. Khanh, Y. Joden, A. Tsuji, and T. Nakagawa, Chem. Eng. Sci. 65, 1296 (2010).
http://dx.doi.org/10.1016/j.ces.2009.10.003
47.
47.T. Uchida, S. Oshita, M. Ohmori, T. Tsuno, K. Soejima, S. Shinozaki, Y. Take, and K. Mitsuda, Nanoscale Res. Lett. 6, 1 (2011).
http://dx.doi.org/10.1186/1556-276X-6-295
48.
48.A. Agarwal, W. J. Ng, and Y. Liu, Chemosphere 84, 1175 (2011).
http://dx.doi.org/10.1016/j.chemosphere.2011.05.054
49.
49.J. R. Seddon, D. Lohse, W. A. Ducker, and V. S. Craig, ChemPhysChem 13, 2179 (2012).
http://dx.doi.org/10.1002/cphc.201100900
50.
50.M. Fan, D. Tao, R. Honaker, and Z. Luo, Min. Sci. Technol. (China) 20, 1 (2010).
http://dx.doi.org/10.1016/S1674-5264(09)60154-X
51.
51.M. Fan, D. Tao, R. Honaker, and Z. Luo, Min. Sci. Technol. (China) 20, 159 (2010).
http://dx.doi.org/10.1016/S1674-5264(09)60179-4
52.
52.N. Ishida, T. Inoue, M. Miyahara, and K. Higashitani, Langmuir 16, 6377 (2000).
http://dx.doi.org/10.1021/la000219r
53.
53.S.-T. Lou, Z.-Q. Ouyang, Y. Zhang, X.-J. Li, J. Hu, M.-Q. Li, and F.-J. Yang, J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct. 18, 2573 (2000).
http://dx.doi.org/10.1116/1.1289925
54.
54.F. Y. Ushikubo, T. Furukawa, R. Nakagawa, M. Enari, Y. Makino, Y. Kawagoe, T. Shiina, and S. Oshita, Colloids Surf., A 361, 31 (2010).
http://dx.doi.org/10.1016/j.colsurfa.2010.03.005
55.
55.Y. Mao and Y. Zhang, Nanoscale Microscale Thermophys. Eng. 17, 79 (2013).
http://dx.doi.org/10.1080/15567265.2012.760692
56.
56.F. Lugli, S. Höfinger, and F. Zerbetto, J. Am. Chem. Soc. 127, 8020 (2005).
http://dx.doi.org/10.1021/ja0505447
57.
57.J. H. Weijs, J. R. Seddon, and D. Lohse, ChemPhysChem 13, 2197 (2012).
http://dx.doi.org/10.1002/cphc.201100807
58.
58.R. K. McMullan and G. A. Jeffrey, J. Chem. Phys. 42, 2725 (1965).
http://dx.doi.org/10.1063/1.1703228
59.
59.B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl, J. Chem. Theory Comput. 4, 435 (2008).
http://dx.doi.org/10.1021/ct700301q
60.
60.J. L. F. Abascal, E. Sanz, R. G. Fernández, and C. Vega, J. Chem. Phys. 122, 234511 (2005).
http://dx.doi.org/10.1063/1.1931662
61.
61.B. Guillot and Y. Guissani, J. Chem. Phys. 99, 8075 (1993).
http://dx.doi.org/10.1063/1.465634
62.
62.P. M. Rodger, T. R. Forester, and W. Smith, Fluid Phase Equilib. 116, 326 (1996).
http://dx.doi.org/10.1016/0378-3812(95)02903-6
63.
63.See supplementary material at http://dx.doi.org/10.1063/1.4920971 for a description of the simulation protocol, a plot of the variation of the potential energy with time during the equilibration period of the simulation, a zoom in of the potential energy as a function of time for the simulation showing the step-like dissociation of the hydrate, snapshots of the hydrate decomposition, changes in the average radius of a nanobubble with time and the migration of the nanobubble in the simulation, a snapshot of the growth of the hydrate plane adjacent to a nanobubble, and variation of the F3 parameter on the two sides of the hydrate phase (adjacent to a nanobubble and with no nanobubble) at two temperatures.[Supplementary Material]
64.
64.I. Shvab and R. J. Sadus, J. Chem. Phys. 140, 104505 (2014).
http://dx.doi.org/10.1063/1.4867282
65.
65.P. Rodger, Ann. N. Y. Acad. Sci. 912, 474 (2000).
http://dx.doi.org/10.1111/j.1749-6632.2000.tb06802.x
66.
66.S. Goldman, J. Chem. Phys. 131, 184502 (2009).
http://dx.doi.org/10.1063/1.3259973
http://aip.metastore.ingenta.com/content/aip/journal/jcp/142/21/10.1063/1.4920971
Loading
/content/aip/journal/jcp/142/21/10.1063/1.4920971
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/142/21/10.1063/1.4920971
2015-06-02
2016-12-06

Abstract

Molecular dynamic simulations are performed to study the conditions for methane nano-bubble formation during methane hydrate dissociation in the presence of water and a methane gas reservoir. Hydrate dissociation leads to the quick release of methane into the liquid phase which can cause methane supersaturation. If the diffusion of methane molecules out of the liquid phase is not fast enough, the methane molecules agglomerate and form bubbles. Under the conditions of our simulations, the methane-rich quasi-spherical bubbles grow to become cylindrical with a radius of ∼11 Å. The nano-bubbles remain stable for about 35 ns until they are gradually and homogeneously dispersed in the liquid phase and finally enter the gas phase reservoirs initially set up in the simulation box. We determined that the minimum mole fraction for the dissolved methane in water to form nano-bubbles is 0.044, corresponding to about 30% of hydrate phase composition (0.148). The importance of nano-bubble formation to the mechanism of methane hydrate formation, growth, and dissociation is discussed.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/142/21/1.4920971.html;jsessionid=8e8nSQGtMPWmyykNeGvAiaG3.x-aip-live-01?itemId=/content/aip/journal/jcp/142/21/10.1063/1.4920971&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/142/21/10.1063/1.4920971&pageURL=http://scitation.aip.org/content/aip/journal/jcp/142/21/10.1063/1.4920971'
Right1,Right2,Right3,