Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.P. W. May, Science 319, 1490-1491 (2008).
2.P. W. May, Philos. Trans. R. Soc., A 358, 473-495 (2000).
3.D. G. Goodwin and J. E. Butler, in Handbook of Industrial Diamonds and Diamond Films, edited by M. A. Prelas, G. Popovici, and L. K. Bigelow (Marcel Dekker, New York, 1998).
4.A. Cheesman, J. N. Harvey, and M. N. Ashfold, J. Phys. Chem. A 112, 11436-11448 (2008).
5.J. E. Butler and R. L. Woodin, Philos. Trans. R. Soc., A 342, 209-224 (1993).
6.S. J. Harris, Appl. Phys. Lett. 56, 2298 (1990).
7.K. Larsson, Phys. Rev. B 56, 15452 (1997).
8.D. J. Poferl, N. C. Gardner, and J. C. Angus, J. Appl. Phys. 44, 1418 (1973).
9.R. E. Rawles, S. F. Komarov, R. Gat, W. G. Morris, J. B. Hudson, and M. P. D’Evelyn, Diamond Relat. Mater. 6, 791 (1997).
10.N. Lee and A. Badzian, Diamond Relat. Mater. 6, 130 (1997).
11.N. Lee and A. Badzian, Appl. Phys. Lett. 66, 2203 (1995).
12.R. E. Stallcup II, Y. Mo, T. W. Scharf, and J. M. Perez, Diamond Relat. Mater. 16, 1727 (2007).
13.M. Naamoun, A. Tallaire, F. Silva, J. Achard, P. Doppelt, and A. Gicquel, Phys. Status Solidi A 209, 1715 (2012).
14.H. Kawarada, H. Sasaki, and A. Sato, Phys. Rev. B 52, 11351 (1995).
15.P. W. May and Y. A. Mankelevich, J. Phys. Chem. C 112, 12432 (2008).
16.A. Netto and M. Frenklach, Diamond Relat. Mater. 14, 1630 (2005).
17.P. W. May, N. L. Allan, J. C. Richley, M. N. R. Ashfold, and Y. A. Mankelevich, J. Phys.: Condens. Matter 21, 364203 (2009).
18.P. W. May, N. L. Allan, M. N. R. Ashfold, J. C. Richley, and Y. A. Mankelevich, Diamond Relat. Mater. 19, 389 (2010).
19.P. W. May, J. N. Harvey, N. L. Allan, J. C. Richley, and Y. A. Mankelevich, J. Appl. Phys. 108, 014905 (2010).
20.P. W. May, J. N. Harvey, N. L. Allan, J. C. Richley, and Y. A. Mankelevich, J. Appl. Phys. 108, 114909 (2010).
21.M. Grujicic and S. G. Lai, J. Mater. Sci. 34, 7 (1999).
22.M. Grujicic and S. G. Lai, J. Mater. Sci. 35, 5359 (2000).
23.M. Grujicic and S. G. Lai, J. Mater. Sci. 35, 5371 (2000).
24.J. C. Richley, “Fundamental studies of diamond chemical vapour deposition: Plasma diagnostics and computer modelling,” Ph.D. thesis (University of Bristol, UK, 2011) available online at:
25.J. Achard, F. Silva, O. Brinza, X. Bonnin, V. Milne, R. Issaoui, M. Kasu, and A. Gicquel, Phys. Status Solidi A 206, 1949 (2009).
26.J. C. Richley, J. N. Harvey, and M. N. R. Ashfold, in Diamond Electronics and Bioelectronics—Fundamentals to Applications III, MRS Symposia Proceedings Vol. 1203, edited byP. Bergonzo, J. E. Butler, R. B. Jackman, K. P. Loh, and M. Nesládek, (Materials Research Society, Pittsburgh, 2010), pp. J17-J32.
27.A. Stukowski, Modell. Simul. Mater. Sci. Eng. 18, 015012 (2010), Ovito software available free from:
28.P. W. May and Y. A. Mankelevich, Mater. Res. Soc. Symp. Proc. 1282 (2011).
29.S. Skokov, B. Weiner, and M. Frenklach, J. Phys. Chem. 98, 7073-7082 (1994).
30.C. C. Battaile, D. J. Srolovitz, I. I. Oleinik, D. G. Pettifor, A. P. Sutton, S. J. Harris, and J. E. Butler, J. Chem. Phys. 111, 4291-4299 (1999).
31.W. J. Rodgers, “Multi-scale modelling of diamond grown via chemical vapour deposition,” Ph.D. thesis (University of Bristol, UK, 2014).
32.J. C. Angus and J. W. Ponton, Surf. Sci. 61, 451 (1976).
33.J. E. Butler and I. Oleynik, Philos. Trans. R. Soc., A 366, 295 (2008).
34.M. Naamoun, A. Tallaire, J. Achard, F. Silva, L. William, P. Doppelt, and A. Gicquel, Phys. Status Solidi A 210, 1985 (2013).
35.T. Teraji, S. Mitani, and T. Ito, Phys. Status Solidi A 198, 395 (2003).
36.Y. Mankelevich and P. W. May, personal communication (2015).
37.J. C. Richley, J. N. Harvey, and M. N. R. Ashfold, J. Phys. Chem. A 113, 11416-11422 (2009).

Data & Media loading...


Article metrics loading...



A three-dimensional kinetic Monte Carlo model has been developed to simulate the chemical vapor deposition of a diamond (100) surface under conditions used to grow single-crystal diamond (SCD), microcrystalline diamond (MCD), nanocrystalline diamond (NCD), and ultrananocrystalline diamond (UNCD) films. The model includes adsorption of CH ( = 0, 3) species, insertion of CH ( = 0-2) into surface dimer bonds, etching/desorption of both transient adsorbed species and lattice sidewalls, lattice incorporation, and surface migration but not defect formation or renucleation processes. A value of ∼200 kJ mol−1 for the activation Gibbs energy, Δ , for etching an adsorbed CH species reproduces the experimental growth rate accurately. SCD and MCD growths are dominated by migration and step-edge growth, whereas in NCD and UNCD growths, migration is less and species nucleate where they land. Etching of species from the lattice sidewalls has been modelled as a function of geometry and the number of bonded neighbors of each species. Choice of appropriate parameters for the relative decrease in etch rate as a function of number of neighbors allows flat-bottomed etch pits and/or sharp-pointed etch pits to be simulated, which resemble those seen when etching diamond in H or O atmospheres. Simulation of surface defects using unetchable, immobile species reproduces other observed growth phenomena, such as needles and hillocks. The critical nucleus for new layer growth is 2 adjacent surface carbons, irrespective of the growth regime. We conclude that twinning and formation of multiple grains rather than pristine single-crystals may be a result of misoriented growth islands merging, with each island forming a grain, rather than renucleation caused by an adsorbing defect species.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd