Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/142/21/10.1063/1.4921833
1.
1.L. Wade, Organic Chemistry, 3rd ed. (Prentice Hall, New York, 1995).
2.
2.H. P. Latscha, U. Kazmaier, and H. A. Klein, Organische Chemie, 6th ed. (Springer, Berlin, 2008).
3.
3.J. Gal, Chirality 12, 959976 (2012).
http://dx.doi.org/10.1002/chir.22071
4.
4.T. J. Leitereg, D. G. Guadagni, J. Harris, T. R. Mon, and R. Teranishi, J. Agric. Food Chem. 19(4), 785 (1971).
http://dx.doi.org/10.1021/jf60176a035
5.
5.J. Hyttel, K. Bøgesø, J. Perrgaard, and C. Sánchez, J. Neural Transm. 88(2), 157160 (1992).
http://dx.doi.org/10.1007/BF01244820
6.
6.N. Böwering, T. Lischke, B. Schmidtke, N. Müller, T. Khalil, and U. Heinzmann, Phys. Rev. Lett. 86, 11871190 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.1187
7.
7.L. Nahon, G. A. Garcia, C. J. Harding, E. Mikajlo, and I. Powis, J. Chem. Phys. 125(11), 114309 (2006).
http://dx.doi.org/10.1063/1.2336432
8.
8.G. A. Garcia, L. Nahon, M. Lebech, J.-C. Houver, D. Dowek, and I. Powis, J. Chem. Phys. 119(17), 87818784 (2003).
http://dx.doi.org/10.1063/1.1621379
9.
9.C. Lux, M. Wollenhaupt, T. Bolze, Q. Liang, J. Köhler, C. Sarpe, and T. Baumert, Angew. Chem., Int. Ed. 51(20), 50015005 (2012).
http://dx.doi.org/10.1002/anie.201109035
10.
10.M. H. M. Janssen and I. Powis, Phys. Chem. Chem. Phys. 16, 856871 (2014).
http://dx.doi.org/10.1039/C3CP53741B
11.
11.M. Pitzer, M. Kunitski, A. S. Johnson, T. Jahnke, H. Sann, F. Sturm, L. P. H. Schmidt, H. Schmidt-Böcking, R. Dörner, J. Stohner, J. Kiedrowski, M. Reggelin, S. Marquardt, A. Schießer, R. Berger, and M. S. Schöffler, Science 341(6150), 10961100 (2013).
http://dx.doi.org/10.1126/science.1240362
12.
12.D. Patterson and M. Schnell, Phys. Chem. Chem. Phys. 16, 1111411123 (2014).
http://dx.doi.org/10.1039/c4cp00417e
13.
13.S. Lobsiger, C. Perez, L. Evangelisti, K. Lehmann, and B. Pate, J. Phys. Chem. Lett. 6(1), 196200 (2015).
http://dx.doi.org/10.1021/jz502312t
14.
14.D. Patterson, M. Schnell, and J. Doyle, Nature 497, 475477 (2013).
http://dx.doi.org/10.1038/nature12150
15.
15.D. Patterson and J. Doyle, Phys. Rev. Lett. 111, 023008 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.023008
16.
16.V. Shubert, D. Schmitz, D. Patterson, J. Doyle, and M. Schnell, Angew. Chem., Int. Ed. 53, 11521155 (2014).
http://dx.doi.org/10.1002/anie.201306271
17.
17.E. Hirota, Proc. Jpn. Acad., Ser. B 88(3), 120128 (2012).
http://dx.doi.org/10.2183/pjab.88.120
18.
18.V. Shubert, D. Schmitz, and M. Schnell, J. Mol. Spectrosc. 300, 3136 (2014).
http://dx.doi.org/10.1016/j.jms.2014.04.002
19.
19.K. A. Hammer, C. F. Carson, and T. V. Riley, Antimicrobrial Agents Chemother. 56(2), 909915 (2012).
http://dx.doi.org/10.1128/AAC.05741-11
20.
20.N. Pazyar, R. Yaghoobi, N. Bagherani, and A. Kazerouni, Int. J. Dermatol. 52(7), 784790 (2013).
http://dx.doi.org/10.1111/j.1365-4632.2012.05654.x
21.
21.V. Schurig, U. Leyrer, and U. Kohnle, Naturwissenschaften 72(4), 211 (1985).
http://dx.doi.org/10.1007/BF01195767
22.
22.See supplementary material at http://dx.doi.org/10.1063/1.4921833 for linelists and mathematical derivations.[Supplementary Material]
23.
23.J.-U. Grabow, Angew. Chem., Int. Ed. 52, 1169811700 (2013).
http://dx.doi.org/10.1002/anie.201307159
24.
24.G. W. King, R. M. Hainer, and P. C. Cross, J. Chem. Phys. 11(1), 27 (1943).
http://dx.doi.org/10.1063/1.1723778
25.
25.A. Bauder, Handbook of High-Resolution Spectroscopy (John Wiley & Sons, Ltd., 2011).
26.
26.D. Schmitz, V. A. Shubert, T. Betz, and M. Schnell, J. Mol. Spectrosc. 280, 7784 (2012).
http://dx.doi.org/10.1016/j.jms.2012.08.001
27.
27.G. G. Brown, B. C. Dian, K. O. Douglass, S. M. Geyer, S. T. Shipman, and B. H. Pate, Rev. Sci. Instrum. 79(5), 053103 (2008).
http://dx.doi.org/10.1063/1.2919120
28.
28.M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, gaussian 09, Revision A.1, Gaussian, Inc., Wallingford, CT, 2009.
29.
29.H. M. Pickett, J. Mol. Spectrosc. 148, 371377 (1991).
http://dx.doi.org/10.1016/0022-2852(91)90393-O
30.
30.D. Schmitz, V. A. Shubert, D. Patterson, A. Krin, and M. Schnell, J. Phys. Chem. Lett. 6, 14931498 (2015).
http://dx.doi.org/10.1021/acs.jpclett.5b00494
31.
31.O. Trapp, personal communication (2014).
32.
32.J. D. McKinney, D. Peroulis, and A. M. Weiner, IEEE Trans. Antennas Propag. 56(1), 3947 (2008).
http://dx.doi.org/10.1109/TAP.2007.913079
33.
33.C. Western, PGOPHER (beta version 8.0.326), a program for simulating rotational structure, 2015.
http://aip.metastore.ingenta.com/content/aip/journal/jcp/142/21/10.1063/1.4921833
Loading
/content/aip/journal/jcp/142/21/10.1063/1.4921833
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/142/21/10.1063/1.4921833
2015-06-02
2016-09-29

Abstract

We apply chirality sensitive microwave three-wave mixing to 4-carvomenthenol, a molecule previously uncharacterized with rotational spectroscopy. We measure its rotational spectrum in the 2-8.5 GHz range and observe three molecular conformers. We describe our method in detail, from the initial step of spectral acquisition and assignment to the final step of determining absolute configuration and enantiomeric excess. Combining fitted rotational constants with dipole moment components derived from quantum chemical calculations, we identify candidate three-wave mixing cycles which were further tested using a double resonance method. Initial optimization of the three-wave mixing signal is done by varying the duration of the second excitation pulse. With known transition dipole matrix elements, absolute configuration can be directly determined from a single measurement.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/142/21/1.4921833.html;jsessionid=cJisI6YqzJw4kj5GZ6hgM8mQ.x-aip-live-06?itemId=/content/aip/journal/jcp/142/21/10.1063/1.4921833&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/142/21/10.1063/1.4921833&pageURL=http://scitation.aip.org/content/aip/journal/jcp/142/21/10.1063/1.4921833'
Right1,Right2,Right3,