Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.See supplementary material at for theoretical formulation, parametrization, efficiency test, additional examples, and crystal packing effects.[Supplementary Material]
2.H. W. Ai, J. Henderson, S. Remington, and R. Campbell, “Directed evolution of a monomeric, bright and photostable version of clavularia cyan fluorescent protein: Structural characterization and applications in fluorescence imaging,” Biochem. J 400, 531540 (2006).
3.M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Clarendon Press, Oxford, 1987).
4.A. R. Atilgan, S. R. Durrell, R. L. Jernigan, M. C. Demirel, O. Keskin, and I. Bahar, “Anisotropy of fluctuation dynamics of proteins with an elastic network model,” Biophys. J. 80, 505515 (2001).
5.I. Bahar, A. R. Atilgan, M. C. Demirel, and B. Erman, “Vibrational dynamics of proteins: Significance of slow and fast modes in relation to function and stability,” Phys. Rev. Lett. 80, 27332736 (1998).
6.I. Bahar, A. R. Atilgan, and B. Erman, “Direct evaluation of thermal fluctuations in proteins using a single-parameter harmonic potential,” Folding Des. 2, 173181 (1997).
7.B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. States, S. Swaminathan, and M. Karplus, “Charmm: A program for macromolecular energy, minimization, and dynamics calculations,” J. Comput. Chem. 4, 187217 (1983).
8.C. Davies, S. W. White, and V. Ramakrishnan, “The crystal structure of ribosomal protein l14 reveals an important organizational component of the translational apparatus,” Structure 4(1), 5566 (1996).
9.O. N. A. Demerdash and J. C. Mitchell, “Density-cluster NMA: A new protein decomposition technique for coarse-grained normal mode analysis,” Proteins: Struct., Funct., Bioinf. 80(7), 17661779 (2012).
10.O. K. Dudko, G. Hummer, and A. Szabo, “Intrinsic rates and activation free energies from single-molecule pulling experiments,” Phys. Rev. Lett. 96, 108101 (2006).
11.U. Emekli, S. Dina, H. Wolfson, R. Nussinov, and T. Haliloglu, “HingeProt: Automated prediction of hinges in protein structures,” Proteins 70(4), 12191227 (2008).
12.S. Flores and M. Gerstein, “FlexOracle: Predicting flexible hinges by identification of stable domains,” BMC Bioinf. 8(1), 215 (2007).
13.S. Flores, L. Lu, J. Yang, N. Carriero, and M. Gerstein, “Hinge atlas: Relating protein sequence to sites of structural flexibility,” BMC Bioinf. 8, 167 (2007).
14.H. Frauenfelder, S. G. Slihar, and P. G. Wolynes, “The energy landsapes and motion of proteins,” Science 254(5038), 15981603 (1991).
15.N. Go, T. Noguti, and T. Nishikawa, “Dynamics of a small globular protein in terms of low-frequency vibrational modes,” Proc. Natl. Acad. Sci. U. S. A. 80, 36963700 (1983).
16.K. Hinsen, “Analysis of domain motions by approximate normal mode calculations,” Proteins 33, 417429 (1998).;2-8
17.K. Hinsen, “Structural flexibility in proteins: Impact of the crystal environment,” Bioinformatics 24, 521528 (2008).
18.W. Humphrey, A. Dalke, and K. Schulten, “VMD – visual molecular dynamics,” J. Mol. Graphics 14(1), 3338 (1996).
19.D. J. Jacobs, A. J. Rader, L. A. Kuhn, and M. F. Thorpe, “Protein flexibility predictions using graph theory,” Proteins: Struct., Funct., Genet. 44(2), 150165 (2001).
20.K. S. Keating, S. C. Flores, M. B. Gerstein, and L. A. Kuhn, “StoneHinge: Hinge prediction by network analysis of individual protein structures,” Protein Sci. 18(2), 359371 (2009).
21.D. A. Kondrashov, A. W. Van Wynsberghe, R. M. Bannen, Q. Cui, and J. G. N. Phillips, “Protein structural variation in computational models and crystallographic data,” Structure 15, 169177 (2007).
22.S. Kundu, J. S. Melton, D. C. Sorensen, and J. G. N. Phillips, “Dynamics of proteins in crystals: Comparison of experiment with simple models,” Biophys. J. 83, 723732 (2002).
23.M. Levitt, C. Sander, and P. S. Stern, “Protein normal-mode dynamics: Trypsin inhibitor, crambin, ribonuclease and lysozyme,” J. Mol. Biol. 181(3), 423447 (1985).
24.G. H. Li and Q. Cui, “A coarse-grained normal mode approach for macromolecules: An efficient implementation and application to Ca(2+)-ATPase,” Bipohys. J. 83, 24572474 (2002).
25.M. V. Matz, A. F. Fradkov, Y. A. Labas, A. P. Savitsky, A. G. Zaraisky, M. L. Markelov, and S. A. Lukyanov, “Fluorescent proteins from nonbioluminescent anthozoa species,” Nat. biotechnol. 17(10), 969973 (1999).
26.K. Opron, K. L. Xia, and G. W. Wei, “Fast and anisotropic flexibility-rigidity index for protein flexibility and fluctuation analysis,” J. Chem. Phys. 140, 234105 (2014).
27.J. K. Park, R. Jernigan, and Z. Wu, “Coarse grained normal mode analysis vs. refined Gaussian network model for protein residue-level structural fluctuations,” Bull. Math. Biol. 75, 124160 (2013).
28.M. Shatsky, R. Nussinov, and H. J. Wolfson, “FlexProt: Alignment of flexible protein structures without a predefinition of hinge regions,” J. Comput. Biol. 11(1), 838106 (2004).
29.O. Shimomura, F. H. Johnson, and Y. Saiga, “Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, aequorea,” J. Cell. Comp. Physiol. 59(3), 223239 (1962).
30.G. Song and R. L. Jernigan, “vgnm: A better model for understanding the dynamics of proteins in crystals,” J. Mol. Biol. 369(3), 880893 (2007).
31.F. Tama, F. X. Gadea, O. Marques, and Y. H. Sanejouand, “Building-block approach for determining low-frequency normal modes of macromolecules,” Proteins: Struct., Funct., Bioinf. 41(1), 17 (2000).;2-P
32.F. Tama and Y. H. Sanejouand, “Conformational change of proteins arising from normal mode calculations,” Protein Eng. 14, 16 (2001).
33.M. Tasumi, H. Takenchi, S. Ataka, A. M. Dwidedi, and S. Krimm, “Normal vibrations of proteins: Glucagon,” Biopolymers 21, 711714 (1982).
34.K. L. Xia, K. Opron, and G. W. Wei, “Multiscale multiphysics and multidomain models — Flexibility and rigidity,” J. Chem. Phys. 139, 194109 (2013).
35.K. L. Xia and G. W. Wei, “A stochastic model for protein flexibility analysis,” Phys. Rev. E 88, 062709 (2013).
36.K. L. Xia and G. W. Wei, “Molecular nonlinear dynamics and protein thermal uncertainty quantification,” Chaos 24, 013103 (2014).

Data & Media loading...


Article metrics loading...



Existing elastic network models are typically parametrized at a given cutoff distance and often fail to properly predict the thermal fluctuation of many macromolecules that involve multiple characteristic length scales. We introduce a multiscale flexibility-rigidity index (mFRI) method to resolve this problem. The proposed mFRI utilizes two or three correlation kernels parametrized at different length scales to capture protein interactions at corresponding scales. It is about 20% more accurate than the Gaussian network model (GNM) in the B-factor prediction of a set of 364 proteins. Additionally, the present method is able to deliver accurate predictions for some large macromolecules on which GNM fails to produce accurate predictions. Finally, for a protein of residues, mFRI is of linear scaling ( ) in computational complexity, in contrast to the order of for GNM.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd