Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/142/23/10.1063/1.4922615
1.
1.W. Schmickler, Chem. Rev. 96, 3177 (1996).
http://dx.doi.org/10.1021/cr940408c
2.
2.R. Guidelli and W. Schmickler, Electrochim. Acta 45, 2317 (2000).
http://dx.doi.org/10.1016/S0013-4686(00)00335-2
3.
3.A. Groß, F. Gossenberger, X. Lin, M. Naderian, S. Sakong, and T. Roman, J. Electrochem. Soc. 161, E3015 (2014).
http://dx.doi.org/10.1149/2.003408jes
4.
4.N. G. Hörmann, M. Jäckle, F. Gossenberger, T. Roman, K. Forster-Tonigold, M. Naderian, S. Sakong, and A. Groß, J. Power Sources 275, 531 (2015).
http://dx.doi.org/10.1016/j.jpowsour.2014.10.198
5.
5.J. K. Norskov, T. Bligaard, J. Rossmeisl, and C. H. Christensen, Nat. Chem. 1, 37 (2009).
http://dx.doi.org/10.1038/nchem.121
6.
6.S. Schnur and A. Groß, Catal. Today 165, 129 (2011).
http://dx.doi.org/10.1016/j.cattod.2010.11.071
7.
7.F. Calle-Vallejo and M. T. Koper, Electrochim. Acta 84, 3 (2012).
http://dx.doi.org/10.1016/j.electacta.2012.04.062
8.
8.K. Tonigold and A. Groß, J. Comput. Chem. 33, 695 (2012).
http://dx.doi.org/10.1002/jcc.22900
9.
9.F. Buchner, K. Forster-Tonigold, B. Uhl, D. Alwast, N. Wagner, H. Farkhondeh, A. Groß, and R. J. Behm, ACS Nano 7, 7773 (2013).
http://dx.doi.org/10.1021/nn4026417
10.
10.J. Klimeš, D. R. Bowler, and A. Michaelides, J. Phys.: Condens. Matter 22, 022201 (2010).
http://dx.doi.org/10.1088/0953-8984/22/2/022201
11.
11.K. Forster-Tonigold and A. Groß, J. Chem. Phys. 141, 064501 (2014).
http://dx.doi.org/10.1063/1.4892400
12.
12.J. K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard, and H. Jónsson, J. Phys. Chem. B 108, 17886 (2004).
http://dx.doi.org/10.1021/jp047349j
13.
13.G. S. Karlberg, J. Rossmeisl, and J. K. Norskov, Phys. Chem. Chem. Phys. 9, 5158 (2007).
http://dx.doi.org/10.1039/b705938h
14.
14.E. Skulason, G. S. Karlberg, J. Rossmeisl, T. Bligaard, J. Greeley, H. Jonsson, and J. K. Norskov, Phys. Chem. Chem. Phys. 9, 3241 (2007).
http://dx.doi.org/10.1039/b700099e
15.
15.J. Rossmeisl, E. Skúlason, M. E. Björketun, V. Tripkovic, and J. K. Nørskov, Chem. Phys. Lett. 466, 68 (2008).
http://dx.doi.org/10.1016/j.cplett.2008.10.024
16.
16.V. Tripkovic, M. E. Björketun, E. Skúlason, and J. Rossmeisl, Phys. Rev. B 84, 115452 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.115452
17.
17.K. Letchworth-Weaver and T. A. Arias, Phys. Rev. B 86, 075140 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.075140
18.
18.J. Lischner and T. A. Arias, J. Phys. Chem. B 114, 1946 (2010).
http://dx.doi.org/10.1021/jp9012224
19.
19.S. A. Petrosyan, A. A. Rigos, and T. A. Arias, J. Phys. Chem. B 109, 15436 (2005).
http://dx.doi.org/10.1021/jp044822k
20.
20.S. A. Petrosyan, J.-F. Briere, D. Roundy, and T. A. Arias, Phys. Rev. B 75, 205105 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.205105
21.
21.R. Sundararaman, K. Letchworth-Weaver, and T. A. Arias, J. Chem. Phys. 137, 044107 (2012).
http://dx.doi.org/10.1063/1.4737392
22.
22.D. Gunceler, K. Letchworth-Weaver, R. Sundararaman, K. A. Schwarz, and T. A. Arias, Modell. Simul. Mater. Sci. Eng. 21, 074005 (2013).
http://dx.doi.org/10.1088/0965-0393/21/7/074005
23.
23.M. Fishman, H. L. Zhuang, K. Mathew, W. Dirschka, and R. G. Hennig, Phys. Rev. B 87, 245402 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.245402
24.
24.K. Mathew, R. Sundararaman, K. Letchworth-Weaver, T. A. Arias, and R. G. Hennig, J. Chem. Phys. 140, 084106 (2014).
http://dx.doi.org/10.1063/1.4865107
25.
25.S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, J. Chem. Phys. 132, 154104 (2010).
http://dx.doi.org/10.1063/1.3382344
26.
26.A. Tkatchenko and M. Scheffler, Phys. Rev. Lett. 102, 073005 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.073005
27.
27.H. Ogasawara, B. Brena, D. Nordlund, M. Nyberg, A. Pelmenschikov, L. G. M. Pettersson, and A. Nilsson, Phys. Rev. Lett. 89, 276102 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.276102
28.
28.A. Hodgson and S. Haq, Surf. Sci. Rep. 64, 381 (2009).
http://dx.doi.org/10.1016/j.surfrep.2009.07.001
29.
29.S. Schnur and A. Groß, New J. Phys. 11, 125003 (2009).
http://dx.doi.org/10.1088/1367-2630/11/12/125003
30.
30.M. Faheem and A. Heyden, J. Chem. Theory Comput. 10, 3354 (2014).
http://dx.doi.org/10.1021/ct500211w
31.
31.J.-L. Fattebert and F. Gygi, J. Comput. Chem. 23, 662 (2002).
http://dx.doi.org/10.1002/jcc.10069
32.
32.J.-L. Fattebert and F. Gygi, Int. J. Quantum Chem. 93, 139 (2003).
http://dx.doi.org/10.1002/qua.10548
33.
33.O. Andreussi, I. Dabo, and N. Marzari, J. Chem. Phys. 136, 064102 (2012).
http://dx.doi.org/10.1063/1.3676407
34.
34.J. Harl and G. Kresse, Phys. Rev. B 77, 045136 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.045136
35.
35.S. Grimme, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 1, 211 (2011).
http://dx.doi.org/10.1002/wcms.30
36.
36.M. Dion, H. Rydberg, E. Schröder, D. C. Langreth, and B. I. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.246401
37.
37.J. Wellendorff, K. T. Lundgaard, A. Møgelhøj, V. Petzold, D. D. Landis, J. K. Nørskov, T. Bligaard, and K. W. Jacobsen, Phys. Rev. B 85, 235149 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.235149
38.
38.W. A. Donald, R. D. Leib, J. T. O’Brien, M. F. Bush, and E. R. Williams, J. Am. Chem. Soc. 130, 3371 (2008).
http://dx.doi.org/10.1021/ja073946i
39.
39.A. A. Isse and A. Gennaro, J. Phys. Chem. B 114, 7894 (2010).
http://dx.doi.org/10.1021/jp100402x
40.
40.G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.11169
41.
41.P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.17953
42.
42.J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
43.
43.J. Klimeš, D. R. Bowler, and A. Michaelides, Phys. Rev. B 83, 195131 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.195131
44.
44.G. Mercurio et al., Phys. Rev. Lett. 104, 036102 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.036102
45.
45.NIST Computational Chemistry Comparison and Benchmark Database, NIST Standard Reference Database Number 101 Release 16a, August 2013, editor: Russell D. Johnson III, http://cccbdb.nist.gov/.
46.
46.S. G. Bratsch, J. Phys. Chem. Ref. Data 18, 1 (1989).
http://dx.doi.org/10.1063/1.555839
47.
47.W. Greiner, L. Neise, and H. Stöcker, Thermodynamik und Statistische Mechanik (Harri Deutsch, Frankfurt am Main, 1987).
48.
48.M. W. Chase, Jr., “NIST-JANAF thermochemical tables, fourth edition,” J. Phys. Chem. Ref. Data, Monogr. 9, 1310 (1988).
49.
49.See supplementary material at http://dx.doi.org/10.1063/1.4922615 for the atomization energies and DFT total energies of molecules involved in the electrochemical half cells.[Supplementary Material]
50.
50.A. BenNaim and Y. Marcus, J. Chem. Phys. 81, 2016 (1984).
http://dx.doi.org/10.1063/1.447824
51.
51.W. Haynes, CRC Handbook of Chemistry and Physics, 95th ed. (CRC Press, 2015).
52.
52.T. Roman and A. Groß, Catal. Today 202, 183 (2013).
http://dx.doi.org/10.1016/j.cattod.2012.06.001
53.
53.A. Roudgar and A. Groß, Chem. Phys. Lett. 409, 157 (2005).
http://dx.doi.org/10.1016/j.cplett.2005.04.103
54.
54.P. Jurecka, J. Sponer, J. Cerny, and P. Hobza, Phys. Chem. Chem. Phys. 8, 1985 (2006).
http://dx.doi.org/10.1039/b600027d
55.
55.M. V. Fernández-Serra and E. Artacho, J. Chem. Phys. 121, 11136 (2004).
http://dx.doi.org/10.1063/1.1813431
56.
56.J. VandeVondele, F. Mohamed, M. Krack, J. Hutter, M. Sprik, and M. Parrinello, J. Chem. Phys. 122, 014515 (2005).
http://dx.doi.org/10.1063/1.1828433
57.
57.L.-M. Liu, M. Krack, and A. Michaelides, J. Chem. Phys. 130, 234702 (2009).
http://dx.doi.org/10.1063/1.3152845
58.
58.S. Meng, E. G. Wang, and S. Gao, Phys. Rev. B 69, 195404 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.195404
59.
59.A. Michaelides, Appl. Phys. A 85, 415 (2006).
http://dx.doi.org/10.1007/s00339-006-3695-9
60.
60.H. Ogasawara, J. Yoshinobu, and M. Kawai, J. Chem. Phys. 111, 7003 (1999).
http://dx.doi.org/10.1063/1.479993
61.
61.J. Carrasco, A. Hodgson, and A. Michaelides, Nat. Mater. 11, 667 (2012).
http://dx.doi.org/10.1038/nmat3354
62.
62.K. Motobayashi, L. Árnadóttir, C. Matsumoto, E. M. Stuve, H. Jónsson, Y. Kim, and M. Kawai, ACS Nano 8, 11583 (2014).
http://dx.doi.org/10.1021/nn504824z
63.
63.L. Firment and G. Somorjai, Surf. Sci. 84, 275 (1979).
http://dx.doi.org/10.1016/0039-6028(79)90138-9
64.
64.C. Panja, N. Saliba, and B. E. Koel, Surf. Sci. 395, 248 (1998).
http://dx.doi.org/10.1016/S0039-6028(97)00629-8
65.
65.W. Lew, M. C. Crowe, E. Karp, and C. T. Campbell, J. Phys. Chem. C 115, 9164 (2011).
http://dx.doi.org/10.1021/jp201608x
66.
66.S. C. Badescu, P. Salo, T. Ala-Nissila, S. C. Ying, K. Jacobi, Y. Wang, K. Bedürftig, and G. Ertl, Phys. Rev. Lett. 88, 136101 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.136101
67.
67.P. Ferrin, S. Kandoi, A. U. Nilekar, and M. Mavrikakis, Surf. Sci. 606, 679 (2012).
http://dx.doi.org/10.1016/j.susc.2011.12.017
68.
68.F. Gossenberger, T. Roman, K. Forster-Tonigold, and A. Groß, Beilstein J. Nanotechnol. 5, 152 (2014).
http://dx.doi.org/10.3762/bjnano.5.15
69.
69.B. Genorio, D. Strmcnik, R. Subbaraman, D. Tripkovic, G. Karapetrov, V. R. Stamenkovic, S. Pejovnik, and N. M. Marković, Nat. Mater. 9, 998 (2010).
http://dx.doi.org/10.1038/nmat2883
70.
70.A. Roudgar and A. Groß, Surf. Sci. 597, 42 (2005).
http://dx.doi.org/10.1016/j.susc.2004.02.040
71.
71.P. Quaino, N. Luque, G. Soldano, R. Nazmutdinov, E. Santos, T. Roman, A. Lundin, A. Groß, and W. Schmickler, Electrochim. Acta 105, 248 (2013).
http://dx.doi.org/10.1016/j.electacta.2013.04.084
72.
72.D. Marx, ChemPhysChem 7, 1848 (2006).
http://dx.doi.org/10.1002/cphc.200600128
http://aip.metastore.ingenta.com/content/aip/journal/jcp/142/23/10.1063/1.4922615
Loading
/content/aip/journal/jcp/142/23/10.1063/1.4922615
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/142/23/10.1063/1.4922615
2015-06-18
2016-09-29

Abstract

We present a computational study of the interface of a Pt electrode and an aqueous electrolyte employing semi-empirical dispersion corrections and an implicit solvent model within first-principles calculations. The electrode potential is parametrized within the computational hydrogen electrode scheme. Using one explicit layer, we find that the most realistic interface configuration is a water bilayer in the H-up configuration. Furthermore, we focus on the contribution of the dispersion interaction and the presence of water on H, O, and OH adsorption energies. This study demonstrates that the implicit water scheme represents a computationally efficient method to take the presence of an aqueous electrolyte interface with a metal electrode into account.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/142/23/1.4922615.html;jsessionid=wDRc7O2lIaeX1E-3FYzD5_Wq.x-aip-live-03?itemId=/content/aip/journal/jcp/142/23/10.1063/1.4922615&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/142/23/10.1063/1.4922615&pageURL=http://scitation.aip.org/content/aip/journal/jcp/142/23/10.1063/1.4922615'
Right1,Right2,Right3,