Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.W. Huggins, Proc. R. Soc. London 33, 1 (1881).
2.A. E. Douglas, Astrophys. J. 114, 466 (1951).
3.K. Clusius and A. E. Douglas, Can. J. Phys. 32, 319 (1954).
4.K. W. Hinkle, J. J. Keady, and P. F. Bernath, Science 241, 1319 (1988).
5.J. Cernicharo, J. R. Goicoechea, and E. Caux, Astrophys. J. Lett. 534, 199 (2000).
6.T. F. Giesen, A. O. van Orden, J. D. Cruzan, R. A. Provencal, R. J. Saykally, R. Gendriesch, F. Lewen, and G. Winnewisser, Astrophys. J. 551, L181 (2001).
7.J. P. Maier, N. M. Lakin, G. A. H. Walker, and D. A. Bohlender, Astrophys. J. 566, 332 (2001).
8.P. Merrill, Publ. Astron. Soc. Pac. 38, 175 (1926).
9.R. F. Sanford, Publ. Astron. Soc. Pac. 38, 177 (1926).
10.B. Kleman, Astrophys. J. 123, 162 (1956).
11.P. J. Sarre, M. E. Hurst, and T. Lloyd Evans, Mon. Not. R. Astron. Soc. 319, 103 (2000).
12.Y. Yamashita, Ann. Tokyo Astron. Obs., Second Ser. 15, 47 (1975).
13.Y. Yamashita, Ann. Tokyo Astron. Obs., Second Ser. 13, 169 (1972).
14.A. R. Walker, Mon. Not. R. Astron. Soc. 174, 609 (1976).
15.T. L. Evans, M. E. Hurst, and P. J. Sarre, Mon. Not. R. Astron. Soc. 319, 111 (2000).
16.S. C. P. Thaddeus and R. Linke, Astrophys. J. Lett. 283, L45 (1984).
17.C. A. Gottlieb, J. M. Vrtilek, and P. Thaddeus, Astrophys. J. Lett. 343, L29 (1989).
18.J. Cernicharo, L. B. F. M. Waters, L. Decin, P. Encrenaz, A. G. G. M. Tielens, M. Agúndez, E. De Beck, H. S. P. Müller, J. R. Goicoechea, M. J. Barlow, A. Benz, N. Crimier, F. Daniel, A. M. Di Giorgio, M. Fich, T. Gaier, P. García-Lario, A. de Koter, T. Khouri, R. Liseau, R. Lombaert, N. Erickson, J. R. Pardo, J. C. Pearson, R. Shipman, C. Sánchez Contreras, and D. Teyssier, Astron. Astrophys. 521, L8 (2010).
19.J. Cernicharo, M. Guelin, C. Kahane, M. Bogey, C. Demuynck, and J. L. Destombes, Astron. Astrophys. 246, 213 (1991).
20.J. H. He, Dinh-V-Trung, S. Kwok, H. S. P. Müller, Y. Zhang, T. Hasegawa, T. C. Peng, and Y. C. Huang, Astrophys. J., Suppl. Ser. 177, 275 (2008).
21.E. D. Tenenbaum, J. L. Dodd, S. N. Milam, N. J. Woolf, and L. M. Ziurys, Astrophys. J., Suppl. Ser. 190, 348 (2010).
22.D. L. Kokkin, S. Brünken, K. H. Young, N. A. Patel, C. A. Gottlieb, P. Thaddeus, and M. C. McCarthy, Astrophys. J., Suppl. Ser. 196, 17 (2011).
23.Process Technology for Silicon Carbide Devices, edited by C.-M. Zetterling (The Institution of Electrical Engineers, 2002).
24.M. D. Allendorf, J. Electrochem. Soc. 140, 747 (1993).
25.H. Koinuma, T. Horiuchi, K. Inomata, H.-K. Ha, K. Nakajina, and K. A. Chaudhary, Pure Appl. Chem. 68, 1151 (1996).
26.A. Veneroni, F. Omarini, and M. Masi, Cryst. Res. Technol. 40, 967 (2005).
27.E. A. Rohlfing, J. Chem. Phys. 91, 4531 (1989).
28.F. J. Northrup and T. J. Sears, J. Opt. Soc. Am. B 7, 1924 (1990).
29.D. A. Michalopoulos, M. E. Geusic, P. R. R. Langridge-Smith, and R. E. Smalley, J. Chem. Phys. 80, 3556 (1984).
30.C. C. Arnold and D. M. Neumark, J. Chem. Phys. 100, 1797 (1994).
31.P. Garcia-Fernandez, J. E. Boggs, and J. F. Stanton, J. Chem. Phys. 126, 074305 (2007).
32.M. C. McCarthy and P. Thaddeus, Phys. Rev. Lett. 90, 213003 (2003).
33.N. J. Reilly, D. L. Kokkin, X. Zhuang, V. Gupta, R. Nagarajan, R. C. Fortenberry, J. P. Maier, T. C. Steimle, J. F. Stanton, and M. C. McCarthy, J. Chem. Phys. 136, 194307 (2012).
34.S. Takano, S. Saito, and T. Tsuji, Publ. Astron. Soc. Jpn. 44, 469 (1992).
35.X. H. Wang, K. Eguchi, C. Iwamoto, and T. Yoshida, Sci. Technol. Adv. Mater. 3, 313 (2002).
36.G. Verhaegen, F. E. Stafford, and J. J. Drowart, J. Chem. Phys. 40, 1622 (1964).
37.M. Pellarin, C. Ray, J. Lerme, J. L. Vialle, M. Broyer, X. Blase, P. Keghelian, P. Melinon, and A. Perez, J. Chem. Phys. 110, 6927 (1999).
38.S. P. So, J. Chem. Soc., Faraday Trans. 2 81, 139 (1985).
39.R. S. Grev and H. F. Schaefer, J. Chem. Phys. 82, 4126 (1985).
40.G. H. F. Diercksen, N. E. Gruner, J. Oddershede, and J. R. Sabin, Chem. Phys. Lett. 117, 29 (1985).
41.J. R. Sabin, J. Oddershede, G. H. F. Diercksen, and N. E. Gruner, J. Chem. Phys. 84, 354 (1986).
42.C. M. L. Rittby, J. Chem. Phys. 95, 5609 (1991).
43.V. Barone, P. Jensen, and C. Minichino, J. Mol. Spectrosc. 154, 252 (1992).
44.W. Gabriel, G. Chambaud, P. Rosmus, A. Spielfiedel, and N. Feautrier, Astrophys. J. 398, 706 (1992).
45.A. Spielfiedel, S. Carter, N. Feautrier, G. Chambaud, and P. Rosmus, J. Phys. Chem. 100, 10055 (1996).
46.Z. H. Kafafi, R. H. Hauge, L. Fredin, and J. Margrave, J. Phys. Chem. 87, 797 (1983).
47.J. D. Presilla-Marquez and W. R. M. Graham, J. Chem. Phys. 95, 5612 (1991).
48.M. Steglich and J. P. Maier, Astrophys. J. 801, 119 (2015).
49.M. S. Child, T. Weston, and J. Tennyson, Mol. Phys. 96, 371 (1999).
50.M. C. McCarthy, C. A. Gottlieb, and P. Thaddeus, Mol. Phys. 101, 697 (2003).
51.D. L. Kokkin, N. J. Reilly, R. C. Fortenberry, T. D. Crawford, and M. C. McCarthy, J. Chem. Phys. 141, 044310 (2014).
52.NITROGEN, Numerical and Iterative Techniques for Rovibronic Energies with General Internal Coordinates, a program written by P. B. Changala,
53.CFOUR, a quantum chemical program package written by J. F. Stanton, J. Gauss, M. E. Harding, P. G. Szalay with contributions from A. A. Auer, R. J. Bartlett, U. Benedikt, C. Berger, D. E. Bernholdt, Y. J. Bomble, L. Cheng, O. Christiansen, M. Heckert, O. Heun, C. Huber, T.-C. Jagau, D. Jonsson, J. Jusélius, K. Klein, W. J. Lauderdale, D. A. Matthews, T. Metzroth, L. A. Mück, D. P. O’Neill, D. R. Price, E. Prochnow, K. Ruud, F. Schiffmann, W. Schwalbach, S. Stopkowicz, A. Tajti, J. Vázquez, F. Wang, J. D. Watts and the integral packagesMOLECULE(J. Almlöf and P. R. Taylor),PROPS (P. R. Taylor), ABACUS(T. Helgaker, H. J. Aa. Jensen, P. Jørgensen, and J. Olsen), and ECP routines by A. V. Mitin and C. van Wüllen. For the current version, see
54.A. N. X. Chapuisat and J.-P. Brunet, Mol. Phys. 72, 1 (1991).
55.V. Szalay, J. Chem. Phys. 99, 1978 (1993).
56.K. Wu and H. Simon, SIAM J. Matrix Anal. Appl. 22, 602 (2000).
57.C. Winstead, S. Paukstis, and J. Gole, J. Mol. Spectrosc. 173, 311 (1995).
58.W. J. Balfour, J. Cao, C. V. V. Prasad, and C. X. W. Qian, J. Chem. Phys. 101, 10343 (1994).
59.Y. -J. Wang, C.-W. Chen, L. Zhou, A. J. Merer, and Y.-C. Hsu, J. Phys. Chem. A 117, 13878 (2013).
60.See supplementary material at for tables of observed and calculated vibrational band positions and assignments (S1) and for a derivation of power law scaling for above-barrier bending levels (S2).[Supplementary Material]
61.R. N. Dixon, Trans. Faraday Soc. 60, 1363 (1964).
62.J. H. Baraban, “Spectroscopic signatures of isomerization,” Ph.D. thesis, Massachusetts Institute of Technology, 2013.
63.P. B. Changala, “Spectroscopy and theory of cis-trans isomerization in the S1 state of acetylene,” Bachelor’s thesis, Massachusetts Institute of Technology, 2013.
64. The barrier height can be obtained by fitting the effective bending frequency () as a function of energy to the expected semi-classical behavior. As has been shown,62,63 we expect below the barrier to follow , where E is the bending vibrational energy and Eb is the effective barrier height. Above the barrier, we assume the bending potential to be reasonably well characterized as a power law in the bending coordinate V(x) ∼ |x|n. A simple derivation (see S260) shows that, in this case, the semi-classical above the barrier should go as . A simultaneous fit of the variational Ka = 0 ν2 levels up to 1500 cm−1 yields Eb = 802(9) cm−1. This is in excellent agreement with the ab initio estimate of 803 cm−1, calculated by correcting the bare linear transition state energy of 846 cm−1 by the difference between the harmonic ZPE for the two stretching modes at the linear transition state and bent equilibrium geometry (−43 cm−1).
65.N. J. Reilly, T. W. Schmidt, and S. H. Kable, J. Phys. Chem. A 110, 12355 (2006).
66.M. C. McCarthy, J. H. Baraban, P. B. Changala, J. F. Stanton, M. A. Martin-Drumel, S. Thorwirth, C. A. Gottlieb, and N. J. Reilly, J. Phys. Chem. Lett. 6, 2107 (2015).
67.J. Cernicharo, M. C. McCarthy, C. A. Gottlieb, M. Agúndez, L. V. Prieto, J. H. Baraban, P. B. Changala, M. Guélin, C. Kahane, M. A. Martin-Drumel, N. A. Patel, N. J. Reilly, J. F. Stanton, G. Quintana-Lacaci, S. Thorwirth, and K. H. Young, Astrophys. J. Lett. 806, L3 (2015).
68.S. H. Nam and S. M. Park, Appl. Phys. A 79, 1117 (2004).
69.P. Swings, A. McKellar, and K. N. Rao, Mon. Not. R. Astron. Soc. 113, 571 (1953).
70.O. Alksnis and L. Zacs, Astrophys. Space Sci. 215, 73 (1994).

Data & Media loading...


Article metrics loading...



We report the gas-phase optical detection of SiC near 390 nm and the first experimental investigation of the rovibrational structure of its 1A ground electronic state using mass-resolved and fluorescence spectroscopy and variational calculations performed on a high-level potential. From this joint study, it is possible to assign all observed = 1 vibrational levels up to 3800 cm−1 with confidence, as well as a number of levels in the = 0, 2,  and 3 manifolds. Dixon-dip plots for the bending coordinate ( ) allow an experimental determination of a barrier to linearity of 783(48) cm−1 (2), in good agreement with theory (802(9) cm−1). The calculated (, ) eigenvalue lattice shows an archetypal example of quantum monodromy (absence of a globally valid set of quantum numbers) that is reflected by the experimentally observed rovibrational levels. The present study provides a solid foundation for infrared and optical surveys of SiC in astronomical objects, particularly in the photosphere of - and -type carbon stars where the isovalent SiC molecule is known to be abundant.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd