Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/142/23/10.1063/1.4922651
1.
1.W. Huggins, Proc. R. Soc. London 33, 1 (1881).
http://dx.doi.org/10.1098/rspl.1881.0060
2.
2.A. E. Douglas, Astrophys. J. 114, 466 (1951).
http://dx.doi.org/10.1086/145486
3.
3.K. Clusius and A. E. Douglas, Can. J. Phys. 32, 319 (1954).
http://dx.doi.org/10.1139/p54-030
4.
4.K. W. Hinkle, J. J. Keady, and P. F. Bernath, Science 241, 1319 (1988).
http://dx.doi.org/10.1126/science.241.4871.1319
5.
5.J. Cernicharo, J. R. Goicoechea, and E. Caux, Astrophys. J. Lett. 534, 199 (2000).
http://dx.doi.org/10.1086/312668
6.
6.T. F. Giesen, A. O. van Orden, J. D. Cruzan, R. A. Provencal, R. J. Saykally, R. Gendriesch, F. Lewen, and G. Winnewisser, Astrophys. J. 551, L181 (2001).
http://dx.doi.org/10.1086/320024
7.
7.J. P. Maier, N. M. Lakin, G. A. H. Walker, and D. A. Bohlender, Astrophys. J. 566, 332 (2001).
http://dx.doi.org/10.1086/337965
8.
8.P. Merrill, Publ. Astron. Soc. Pac. 38, 175 (1926).
http://dx.doi.org/10.1086/123573
9.
9.R. F. Sanford, Publ. Astron. Soc. Pac. 38, 177 (1926).
http://dx.doi.org/10.1086/123575
10.
10.B. Kleman, Astrophys. J. 123, 162 (1956).
http://dx.doi.org/10.1086/146142
11.
11.P. J. Sarre, M. E. Hurst, and T. Lloyd Evans, Mon. Not. R. Astron. Soc. 319, 103 (2000).
http://dx.doi.org/10.1046/j.1365-8711.2000.03818.x
12.
12.Y. Yamashita, Ann. Tokyo Astron. Obs., Second Ser. 15, 47 (1975).
13.
13.Y. Yamashita, Ann. Tokyo Astron. Obs., Second Ser. 13, 169 (1972).
14.
14.A. R. Walker, Mon. Not. R. Astron. Soc. 174, 609 (1976).
http://dx.doi.org/10.1093/mnras/174.3.609
15.
15.T. L. Evans, M. E. Hurst, and P. J. Sarre, Mon. Not. R. Astron. Soc. 319, 111 (2000).
http://dx.doi.org/10.1046/j.1365-8711.2000.03819.x
16.
16.S. C. P. Thaddeus and R. Linke, Astrophys. J. Lett. 283, L45 (1984).
http://dx.doi.org/10.1086/184330
17.
17.C. A. Gottlieb, J. M. Vrtilek, and P. Thaddeus, Astrophys. J. Lett. 343, L29 (1989).
http://dx.doi.org/10.1086/185503
18.
18.J. Cernicharo, L. B. F. M. Waters, L. Decin, P. Encrenaz, A. G. G. M. Tielens, M. Agúndez, E. De Beck, H. S. P. Müller, J. R. Goicoechea, M. J. Barlow, A. Benz, N. Crimier, F. Daniel, A. M. Di Giorgio, M. Fich, T. Gaier, P. García-Lario, A. de Koter, T. Khouri, R. Liseau, R. Lombaert, N. Erickson, J. R. Pardo, J. C. Pearson, R. Shipman, C. Sánchez Contreras, and D. Teyssier, Astron. Astrophys. 521, L8 (2010).
http://dx.doi.org/10.1051/0004-6361/201015150
19.
19.J. Cernicharo, M. Guelin, C. Kahane, M. Bogey, C. Demuynck, and J. L. Destombes, Astron. Astrophys. 246, 213 (1991).
20.
20.J. H. He, Dinh-V-Trung, S. Kwok, H. S. P. Müller, Y. Zhang, T. Hasegawa, T. C. Peng, and Y. C. Huang, Astrophys. J., Suppl. Ser. 177, 275 (2008).
http://dx.doi.org/10.1086/587142
21.
21.E. D. Tenenbaum, J. L. Dodd, S. N. Milam, N. J. Woolf, and L. M. Ziurys, Astrophys. J., Suppl. Ser. 190, 348 (2010).
http://dx.doi.org/10.1088/0067-0049/190/2/348
22.
22.D. L. Kokkin, S. Brünken, K. H. Young, N. A. Patel, C. A. Gottlieb, P. Thaddeus, and M. C. McCarthy, Astrophys. J., Suppl. Ser. 196, 17 (2011).
http://dx.doi.org/10.1088/0067-0049/196/2/17
23.
23.Process Technology for Silicon Carbide Devices, edited by C.-M. Zetterling (The Institution of Electrical Engineers, 2002).
24.
24.M. D. Allendorf, J. Electrochem. Soc. 140, 747 (1993).
http://dx.doi.org/10.1149/1.2056152
25.
25.H. Koinuma, T. Horiuchi, K. Inomata, H.-K. Ha, K. Nakajina, and K. A. Chaudhary, Pure Appl. Chem. 68, 1151 (1996).
http://dx.doi.org/10.1351/pac199668051151
26.
26.A. Veneroni, F. Omarini, and M. Masi, Cryst. Res. Technol. 40, 967 (2005).
http://dx.doi.org/10.1002/crat.200410469
27.
27.E. A. Rohlfing, J. Chem. Phys. 91, 4531 (1989).
http://dx.doi.org/10.1063/1.456791
28.
28.F. J. Northrup and T. J. Sears, J. Opt. Soc. Am. B 7, 1924 (1990).
http://dx.doi.org/10.1364/JOSAB.7.001924
29.
29.D. A. Michalopoulos, M. E. Geusic, P. R. R. Langridge-Smith, and R. E. Smalley, J. Chem. Phys. 80, 3556 (1984).
http://dx.doi.org/10.1063/1.447201
30.
30.C. C. Arnold and D. M. Neumark, J. Chem. Phys. 100, 1797 (1994).
http://dx.doi.org/10.1063/1.466532
31.
31.P. Garcia-Fernandez, J. E. Boggs, and J. F. Stanton, J. Chem. Phys. 126, 074305 (2007).
http://dx.doi.org/10.1063/1.2472329
32.
32.M. C. McCarthy and P. Thaddeus, Phys. Rev. Lett. 90, 213003 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.213003
33.
33.N. J. Reilly, D. L. Kokkin, X. Zhuang, V. Gupta, R. Nagarajan, R. C. Fortenberry, J. P. Maier, T. C. Steimle, J. F. Stanton, and M. C. McCarthy, J. Chem. Phys. 136, 194307 (2012).
http://dx.doi.org/10.1063/1.4704672
34.
34.S. Takano, S. Saito, and T. Tsuji, Publ. Astron. Soc. Jpn. 44, 469 (1992).
35.
35.X. H. Wang, K. Eguchi, C. Iwamoto, and T. Yoshida, Sci. Technol. Adv. Mater. 3, 313 (2002).
http://dx.doi.org/10.1016/S1468-6996(02)00041-4
36.
36.G. Verhaegen, F. E. Stafford, and J. J. Drowart, J. Chem. Phys. 40, 1622 (1964).
http://dx.doi.org/10.1063/1.1725370
37.
37.M. Pellarin, C. Ray, J. Lerme, J. L. Vialle, M. Broyer, X. Blase, P. Keghelian, P. Melinon, and A. Perez, J. Chem. Phys. 110, 6927 (1999).
http://dx.doi.org/10.1063/1.478598
38.
38.S. P. So, J. Chem. Soc., Faraday Trans. 2 81, 139 (1985).
http://dx.doi.org/10.1039/f29858100139
39.
39.R. S. Grev and H. F. Schaefer, J. Chem. Phys. 82, 4126 (1985).
http://dx.doi.org/10.1063/1.448853
40.
40.G. H. F. Diercksen, N. E. Gruner, J. Oddershede, and J. R. Sabin, Chem. Phys. Lett. 117, 29 (1985).
http://dx.doi.org/10.1016/0009-2614(85)80398-5
41.
41.J. R. Sabin, J. Oddershede, G. H. F. Diercksen, and N. E. Gruner, J. Chem. Phys. 84, 354 (1986).
http://dx.doi.org/10.1063/1.450829
42.
42.C. M. L. Rittby, J. Chem. Phys. 95, 5609 (1991).
http://dx.doi.org/10.1063/1.461635
43.
43.V. Barone, P. Jensen, and C. Minichino, J. Mol. Spectrosc. 154, 252 (1992).
http://dx.doi.org/10.1016/0022-2852(92)90206-4
44.
44.W. Gabriel, G. Chambaud, P. Rosmus, A. Spielfiedel, and N. Feautrier, Astrophys. J. 398, 706 (1992).
http://dx.doi.org/10.1086/171895
45.
45.A. Spielfiedel, S. Carter, N. Feautrier, G. Chambaud, and P. Rosmus, J. Phys. Chem. 100, 10055 (1996).
http://dx.doi.org/10.1021/jp960191l
46.
46.Z. H. Kafafi, R. H. Hauge, L. Fredin, and J. Margrave, J. Phys. Chem. 87, 797 (1983).
http://dx.doi.org/10.1021/j100228a020
47.
47.J. D. Presilla-Marquez and W. R. M. Graham, J. Chem. Phys. 95, 5612 (1991).
http://dx.doi.org/10.1063/1.461636
48.
48.M. Steglich and J. P. Maier, Astrophys. J. 801, 119 (2015).
http://dx.doi.org/10.1088/0004-637X/801/2/119
49.
49.M. S. Child, T. Weston, and J. Tennyson, Mol. Phys. 96, 371 (1999).
http://dx.doi.org/10.1080/00268979909482971
50.
50.M. C. McCarthy, C. A. Gottlieb, and P. Thaddeus, Mol. Phys. 101, 697 (2003).
http://dx.doi.org/10.1080/0026897021000035197
51.
51.D. L. Kokkin, N. J. Reilly, R. C. Fortenberry, T. D. Crawford, and M. C. McCarthy, J. Chem. Phys. 141, 044310 (2014).
http://dx.doi.org/10.1063/1.4883521
52.
52.NITROGEN, Numerical and Iterative Techniques for Rovibronic Energies with General Internal Coordinates, a program written by P. B. Changala, http://www.colorado.edu/nitrogen.
53.
53.CFOUR, a quantum chemical program package written by J. F. Stanton, J. Gauss, M. E. Harding, P. G. Szalay with contributions from A. A. Auer, R. J. Bartlett, U. Benedikt, C. Berger, D. E. Bernholdt, Y. J. Bomble, L. Cheng, O. Christiansen, M. Heckert, O. Heun, C. Huber, T.-C. Jagau, D. Jonsson, J. Jusélius, K. Klein, W. J. Lauderdale, D. A. Matthews, T. Metzroth, L. A. Mück, D. P. O’Neill, D. R. Price, E. Prochnow, K. Ruud, F. Schiffmann, W. Schwalbach, S. Stopkowicz, A. Tajti, J. Vázquez, F. Wang, J. D. Watts and the integral packagesMOLECULE(J. Almlöf and P. R. Taylor),PROPS (P. R. Taylor), ABACUS(T. Helgaker, H. J. Aa. Jensen, P. Jørgensen, and J. Olsen), and ECP routines by A. V. Mitin and C. van Wüllen. For the current version, see http://www.cfour.de.
54.
54.A. N. X. Chapuisat and J.-P. Brunet, Mol. Phys. 72, 1 (1991).
http://dx.doi.org/10.1080/00268979100100011
55.
55.V. Szalay, J. Chem. Phys. 99, 1978 (1993).
http://dx.doi.org/10.1063/1.465258
56.
56.K. Wu and H. Simon, SIAM J. Matrix Anal. Appl. 22, 602 (2000).
http://dx.doi.org/10.1137/S0895479898334605
57.
57.C. Winstead, S. Paukstis, and J. Gole, J. Mol. Spectrosc. 173, 311 (1995).
http://dx.doi.org/10.1006/jmsp.1995.1238
58.
58.W. J. Balfour, J. Cao, C. V. V. Prasad, and C. X. W. Qian, J. Chem. Phys. 101, 10343 (1994).
http://dx.doi.org/10.1063/1.467914
59.
59.Y. -J. Wang, C.-W. Chen, L. Zhou, A. J. Merer, and Y.-C. Hsu, J. Phys. Chem. A 117, 13878 (2013).
http://dx.doi.org/10.1021/jp408490d
60.
60.See supplementary material at http://dx.doi.org/10.1063/1.4922651 for tables of observed and calculated vibrational band positions and assignments (S1) and for a derivation of power law scaling for above-barrier bending levels (S2).[Supplementary Material]
61.
61.R. N. Dixon, Trans. Faraday Soc. 60, 1363 (1964).
http://dx.doi.org/10.1039/tf9646001363
62.
62.J. H. Baraban, “Spectroscopic signatures of isomerization,” Ph.D. thesis, Massachusetts Institute of Technology, 2013.
63.
63.P. B. Changala, “Spectroscopy and theory of cis-trans isomerization in the S1 state of acetylene,” Bachelor’s thesis, Massachusetts Institute of Technology, 2013.
64.
64. The barrier height can be obtained by fitting the effective bending frequency () as a function of energy to the expected semi-classical behavior. As has been shown,62,63 we expect below the barrier to follow , where E is the bending vibrational energy and Eb is the effective barrier height. Above the barrier, we assume the bending potential to be reasonably well characterized as a power law in the bending coordinate V(x) ∼ |x|n. A simple derivation (see S260) shows that, in this case, the semi-classical above the barrier should go as . A simultaneous fit of the variational Ka = 0 ν2 levels up to 1500 cm−1 yields Eb = 802(9) cm−1. This is in excellent agreement with the ab initio estimate of 803 cm−1, calculated by correcting the bare linear transition state energy of 846 cm−1 by the difference between the harmonic ZPE for the two stretching modes at the linear transition state and bent equilibrium geometry (−43 cm−1).
65.
65.N. J. Reilly, T. W. Schmidt, and S. H. Kable, J. Phys. Chem. A 110, 12355 (2006).
http://dx.doi.org/10.1021/jp064411z
66.
66.M. C. McCarthy, J. H. Baraban, P. B. Changala, J. F. Stanton, M. A. Martin-Drumel, S. Thorwirth, C. A. Gottlieb, and N. J. Reilly, J. Phys. Chem. Lett. 6, 2107 (2015).
http://dx.doi.org/10.1021/acs.jpclett.5b00770
67.
67.J. Cernicharo, M. C. McCarthy, C. A. Gottlieb, M. Agúndez, L. V. Prieto, J. H. Baraban, P. B. Changala, M. Guélin, C. Kahane, M. A. Martin-Drumel, N. A. Patel, N. J. Reilly, J. F. Stanton, G. Quintana-Lacaci, S. Thorwirth, and K. H. Young, Astrophys. J. Lett. 806, L3 (2015).
http://dx.doi.org/10.1088/2041-8205/806/1/L3
68.
68.S. H. Nam and S. M. Park, Appl. Phys. A 79, 1117 (2004).
http://dx.doi.org/10.1007/s00339-004-2658-2
69.
69.P. Swings, A. McKellar, and K. N. Rao, Mon. Not. R. Astron. Soc. 113, 571 (1953).
http://dx.doi.org/10.1093/mnras/113.5.571
70.
70.O. Alksnis and L. Zacs, Astrophys. Space Sci. 215, 73 (1994).
http://dx.doi.org/10.1007/BF00627461
http://aip.metastore.ingenta.com/content/aip/journal/jcp/142/23/10.1063/1.4922651
Loading
/content/aip/journal/jcp/142/23/10.1063/1.4922651
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/142/23/10.1063/1.4922651
2015-06-18
2016-12-08

Abstract

We report the gas-phase optical detection of SiC near 390 nm and the first experimental investigation of the rovibrational structure of its 1A ground electronic state using mass-resolved and fluorescence spectroscopy and variational calculations performed on a high-level potential. From this joint study, it is possible to assign all observed = 1 vibrational levels up to 3800 cm−1 with confidence, as well as a number of levels in the = 0, 2,  and 3 manifolds. Dixon-dip plots for the bending coordinate ( ) allow an experimental determination of a barrier to linearity of 783(48) cm−1 (2), in good agreement with theory (802(9) cm−1). The calculated (, ) eigenvalue lattice shows an archetypal example of quantum monodromy (absence of a globally valid set of quantum numbers) that is reflected by the experimentally observed rovibrational levels. The present study provides a solid foundation for infrared and optical surveys of SiC in astronomical objects, particularly in the photosphere of - and -type carbon stars where the isovalent SiC molecule is known to be abundant.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/142/23/1.4922651.html;jsessionid=mBnSvCfmOEpIzV3cmONuNIxp.x-aip-live-06?itemId=/content/aip/journal/jcp/142/23/10.1063/1.4922651&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/142/23/10.1063/1.4922651&pageURL=http://scitation.aip.org/content/aip/journal/jcp/142/23/10.1063/1.4922651'
Right1,Right2,Right3,