Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/142/24/10.1063/1.4922352
1.
1.B. O. Roos, P. R. Taylor, and, and P. E. M. Siegbahn, Chem. Phys. 48, 157 (1980).
http://dx.doi.org/10.1016/0301-0104(80)80045-0
2.
2.K. Ruedenberg and K. R. Sundberg, in Quantum Science, edited by J.-L. Calais, O. Goscinski, J. Linderberg, and Y. Öhrn (Plenum, New York, 1976), pp. 505515.
3.
3.H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz, P. Celani, T. Korona, R. Lindh, A. Mitrushenkov, G. Rauhut, K. R. Shamasundar, T. B. Adler, R. D. Amos, A. Bernhardsson, A. Berning, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, E. Goll, C. Hampel, A. Hesselmann, G. Hetzer, T. Hrenar, G. Jansen, C. Köppl, Y. Liu, A. W. Lloyd, R. A. Mata, A. J. May, S. J. McNicholas, W. Meyer, M. E. Mura, A. Nicklaß, D. P. O’Neill, P. Palmieri, D. Peng, K. Pflüger, R. Pitzer, M. Reiher, T. Shiozaki, H. Stoll, A. J. Stone, R. Tarroni, T. Thorsteinsson, and M. Wang, molpro, version 2012.1, a package of ab initio programs, 2012, see http://www.molpro.net.
4.
4.H.-J. Werner and P. J. Knowles, J. Chem. Phys. 82, 5053 (1985).
http://dx.doi.org/10.1063/1.448627
5.
5.P. J. Knowles and H.-J. Werner, Chem. Phys. Lett. 115, 259 (1985).
http://dx.doi.org/10.1016/0009-2614(85)80025-7
6.
6.H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, and M. Schütz, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2, 242253 (2012).
http://dx.doi.org/10.1002/wcms.82
7.
7.G. Hose and U. Kaldor, J. Phys. B 12, 3287 (1979).
http://dx.doi.org/10.1088/0022-3700/12/23/012
8.
8.M. R. Hoffmann, D. Datta, S. Das, D. Mukherjee, A. Szabados, Z. Rolik, and P. R. Surján, J. Chem. Phys. 131, 204104 (2009).
http://dx.doi.org/10.1063/1.3265769
9.
9.T. P. Hamilton and P. Pulay, J. Chem. Phys. 88, 4926 (1988).
http://dx.doi.org/10.1063/1.454704
10.
10.J. M. Bofill and P. Pulay, J. Chem. Phys. 90, 3637 (1989).
http://dx.doi.org/10.1063/1.455822
11.
11.D. J. Thouless, The Quantum Mechanics of Many-Body Systems (Academic Press, Inc., New York, 1961).
12.
12.W. H. Adams, Phys. Rev. 127, 1650 (1962).
http://dx.doi.org/10.1103/PhysRev.127.1650
13.
13.P.-O. Löwdin, Rev. Mod. Phys. 35, 415 (1963).
http://dx.doi.org/10.1103/revmodphys.35.415
14.
14.J. Koutecky, J. Chem. Phys. 46, 2443 (1967).
http://dx.doi.org/10.1063/1.1841058
15.
15.P.-O. Löwdin, in Quantum Theory of Atoms, Molecules, and the Solid State, edited byP.-O. Löwdin (Academic Press, New York, 1966), pp. 601624.
16.
16.K. Yamaguchi, T. Fueno, and H. Fukutome, Chem. Phys. Lett. 22, 466470 (1973).
http://dx.doi.org/10.1016/0009-2614(73)87009-5
17.
17.K. Yamaguchi, Chem. Phys. Lett. 33, 330 (1975).
http://dx.doi.org/10.1016/0009-2614(75)80169-2
18.
18.K. Yamaguchi, S. Yabushita, T. Fueno, S. Kato, K. Morokuma, and S. Iwata, Chem. Phys. Lett. 71, 563 (1980).
http://dx.doi.org/10.1016/0009-2614(80)80224-7
19.
19.M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. J. Su, T. L. Windus, M. Dupuis, and J. A. Montgomery, J. Comput. Chem. 14, 1347 (1993).
http://dx.doi.org/10.1002/jcc.540141112
20.
20.P. Pulay, Theor. Chim. Acta 50, 299 (1979).
http://dx.doi.org/10.1007/BF00551337
21.
21.K. Andersson, P.-Å Malmqvist, B. O. Roos, A. J. Sadlej, and K. Wolinski, J. Phys. Chem. 94, 5483 (1990).
http://dx.doi.org/10.1021/j100377a012
22.
22.P. Pulay, Int. J. Quantum Chem. 111, 3273 (2011).
http://dx.doi.org/10.1002/qua.23052
23.
23.P.-Å Malmqvist, A. Rendell, and B. O. Roos, J. Phys. Chem. 95, 5477 (1990).
http://dx.doi.org/10.1021/j100377a011
24.
24.P. M. Kozlowski and P. Pulay, Theor. Chem. Acc. 100, 12 (1998).
http://dx.doi.org/10.1007/s002140050361
25.
25.W. J. Hehre, L. Radom, P. v. R. Schleyer, and J. A. Pople, Ab InitioMolecular Orbital Theory (Wiley, New York, 1986), p. 5.
26.
26.M. Hanauer and A. Köhn, J. Chem. Phys. 136, 204107 (2012).
http://dx.doi.org/10.1063/1.4718700
27.
27.H.-J. Werner, private communication (2013).
28.
28.A. A. Granovsky, J. Chem. Phys. 134, 214113 (2011).
http://dx.doi.org/10.1063/1.3596699
29.
29.T. Shiozaki, W. Győrffy, P. Celani, and H.-J. Werner, J. Chem. Phys. 135, 081106 (2011).
http://dx.doi.org/10.1063/1.3633329
30.
30.P. O. Dral and T. Clark, J. Phys. Chem. A 115, 11303 (2011).
http://dx.doi.org/10.1021/jp204939x
31.
31.L. Noodleman, J. Chem. Phys. 74, 5737 (1981).
http://dx.doi.org/10.1063/1.440939
32.
32.L. Noodleman, J. G. Norman, J. H. Osborne, A. Aizman, and D. A. Case, J. Am. Chem. Soc. 107, 3418 (1985).
http://dx.doi.org/10.1021/ja00298a004
33.
33.C. R. Jacob and M. Reiher, Int. J. Quantum Chem. 112, 3661 (2012).
http://dx.doi.org/10.1002/qua.24309
34.
34.S. R. White, Phys. Rev. Lett. 69, 2863 (1993).
http://dx.doi.org/10.1103/PhysRevLett.69.2863
35.
35.Ö. Legeza, R. Noack, J. Sólyom, and L. Tincani, in Computational Many-Particle Physics, Lecture Notes in Physics Vol. 739, edited byH. Fehske, R. Schneider, and A. Weisse (Springer, Berlin, Heidelberg, 2008), pp. 653664.
36.
36.K. H. Marti and M. Reiher, Z. Phys. Chem. 224, 583 (2010).
http://dx.doi.org/10.1524/zpch.2010.6125
37.
37.G. K.-L. Chan and S. Sharma, Annu. Rev. Phys. Chem. 61, 465 (2011).
http://dx.doi.org/10.1146/annurev-physchem-032210-103338
38.
38.Y. Kurashige, Mol. Phys. 112, 1485 (2014).
http://dx.doi.org/10.1080/00268976.2013.843730
39.
39.S. Wouters and D. van Neck, Eur. Phys. J. D 68, 272 (2014).
http://dx.doi.org/10.1140/epjd/e2014-50500-1
40.
40.C. Angeli, R. Cimiraglia, S. Evangelisti, T. Leininger, and J.-P. Malrieu, J. Chem. Phys. 114, 10252 (2001).
http://dx.doi.org/10.1063/1.1361246
41.
41.(a) Y. Kurashige and T. Yanai, J. Chem. Phys. 135, 094104 (2011);
http://dx.doi.org/10.1063/1.3629454
41.(b) Y. Kurashige, J. Chalupsky, T. Nguyen Lan, and T. Yanai, J. Chem. Phys. 141, 174111 (2014);
http://dx.doi.org/10.1063/1.4900878
41.(c) S. Sharma and G. K.-L. Chan, J. Chem. Phys. 141, 111101 (2014).
http://dx.doi.org/10.1063/1.4895977
42.
42.G. Moritz and M. Reiher, J. Chem. Phys. 126, 244109 (2007).
http://dx.doi.org/10.1063/1.2741527
43.
43.K. Boguslawski, K. H. Marti, and M. Reiher, J. Chem. Phys. 134, 224101 (2011).
http://dx.doi.org/10.1063/1.3596482
44.
44.K. Boguslawski, P. Tecmer, Ö. Legeza, and M. Reiher, J. Phys. Chem. Lett. 3, 3129 (2012).
http://dx.doi.org/10.1021/jz301319v
45.
45.C. A. Jiménez-Hoyos, T. M. Henderson, T. Tsuchimochi, and G. E. Scuseria, J. Chem. Phys. 136, 164109 (2012).
http://dx.doi.org/10.1063/1.4705280
46.
46.K. Yamaguchi, Y. Yoshioka, T. Takatsuka, and T. Fueno, Theor. Chim. Acta 48, 185 (1978).
http://dx.doi.org/10.1007/BF00549018
47.
47.H. Fukutome, Int. J. Quantum Chem. 20, 955 (1981).
http://dx.doi.org/10.1002/qua.560200502
48.
48.V. Veryazov, P. Å Malmqvist, and B. O. Roos, Int. J. Quantum Chem. 111, 3329 (2011).
http://dx.doi.org/10.1002/qua.23068
49.
49.H. J. A. Jensen, P. Jørgensen, H. Ågren, and J. Olsen, J. Chem. Phys. 88, 3834 (1988).
http://dx.doi.org/10.1063/1.453884
50.
50.R. K. Chaudhuri and K. F. Freed, J. Chem. Phys. 126, 114103 (2007), and references therein.
http://dx.doi.org/10.1063/1.2566692
51.
51.M. L. Abrams and C. D. Sherrill, Chem. Phys. Lett. 395, 227 (2004).
http://dx.doi.org/10.1016/j.cplett.2004.07.081
52.
52.P. Slavicek and T. J. Martinez, J. Chem. Phys. 132, 234102 (2010).
http://dx.doi.org/10.1063/1.3436501
53.
53.Z. Lu and S. Matsika, J. Phys. Chem. A 117, 7421 (2013).
http://dx.doi.org/10.1021/jp401444c
54.
54.Y. Shu, E. G. Hohenstrin, and B. G. Levine, J. Chem. Phys. 142, 024102 (2015).
http://dx.doi.org/10.1063/1.4905124
55.
55.J. A. Pople and R. K. Nesbet, J. Chem. Phys. 22, 571 (1954).
http://dx.doi.org/10.1063/1.1740120
56.
56.G. Berthier and C. R. Hebd, Séances Acad. Sci. 238, 91 (1954).
57.
57.J. Čižek and J. Paldus, J. Chem. Phys. 47, 3976 (1967).
http://dx.doi.org/10.1063/1.1701562
58.
58.N. S. Ostlund, J. Chem. Phys. 57, 2994 (1972).
http://dx.doi.org/10.1063/1.1678695
59.
59.K. D. Jordan and R. Silbey, Chem. Phys. Lett. 18, 27 (1973).
http://dx.doi.org/10.1016/0009-2614(73)80330-6
60.
60.V. Bonačič-Koutecký and J. Koutecký, Theor. Chim. Acta 36, 149 (1975).
http://dx.doi.org/10.1007/bf00572556
61.
61.P. Pulay, Chem. Phys. Lett. 73, 393 (1980).
http://dx.doi.org/10.1016/0009-2614(80)80396-4
62.
62.H.-J. Werner, Adv. Chem. Phys. 69, 1 (1987).
63.
63.P. Pulay and R. F. Liu, J. Phys. Chem. 94, 5548 (1990).
http://dx.doi.org/10.1021/j100377a026
64.
64.F. W. Bobrowicz and W. A. Goddard, in Methods of Electronic Structure Theory, Modern Theoretical Chemistry Vol. 3, edited byH. F. Schaefer III (Plenum, New York, 1977), pp. 79128.
65.
65.A. T. Amos and G. G. Hall, Proc. R. Soc. A 263, 483 (1961).
http://dx.doi.org/10.1098/rspa.1961.0175
66.
66.V. Guner, K. S. Khuong, A. G. Leach, P. S. Lee, M. D. Bartberger, and K. N. Houk, J. Phys. Chem. A 107, 11445 (2003).
http://dx.doi.org/10.1021/jp035501w
67.
67.Y. G. Smeyers and L. Doreste-Suarez, Int. J. Quantum Chem. 7, 687 (1973).
http://dx.doi.org/10.1002/qua.560070406
68.
68.R. G. A. Bone and P. Pulay, Int. J. Quantum Chem. 45, 133 (1993).
http://dx.doi.org/10.1002/qua.560450203
69.
69.P. A. Cox and M. H. Wood, Theor. Chim. Acta 31, 269 (1976).
http://dx.doi.org/10.1007/BF01177995
70.
70.P.-O. Löwdin, Phys. Rev. 97, 1509 (1955).
http://dx.doi.org/10.1103/PhysRev.97.1509
71.
71.I. Mayer, Adv. Quantum Chem. 12, 189 (1980).
http://dx.doi.org/10.1016/s0065-3276(08)60317-2
72.
72.R. Lefebvre and R. Prat, Chem. Phys. Lett. 1, 388 (1967).
http://dx.doi.org/10.1016/0009-2614(67)80044-7
73.
73.K. Yamaguchi, Theor. Chim. Acta 102, 328 (1999).
http://dx.doi.org/10.1007/s002140050505
74.
74.J. Baker, K. Wolinski, T. Janowski, S. Saebo, and P. Pulay, PQS version 3.2, Parallel Quantum Solutions, P.O. Box 293, Fayetteville, Arkansas 72702–0293, USA, www.pqs-chem.com.
75.
75.See supplementary material at http://dx.doi.org/10.1063/1.4922352 for molecular geometries, UHF, UNO-CAS, CASSCF, DMRG occupation numbers, and detailed DMRG results.[Supplementary Material]
76.
76.Ö. Legeza, QC-DMRG-Budapest, a program for quantum chemical DMRG calculations, HAS RISSPO, Budapest, 2011.
77.
77.S. F. Keller and M. Reiher, Chimia 68, 200 (2014).
http://dx.doi.org/10.2533/chimia.2014.200
78.
78.M. Dolfi, B. Bauer, S. Keller, A. Kosenkov, T. Ewart, A. Kantian, T. Giamarchi, and M. Troyer, Comput. Phys. Commun. 185, 3430 (2014).
http://dx.doi.org/10.1016/j.cpc.2014.08.019
79.
79.Ö. Legeza and J. Sólyom, Phys. Rev. B 70, 205118 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.205118
80.
80.J. P. Perdew, Phys. Rev. B 33, 8822 (1986).
http://dx.doi.org/10.1103/PhysRevB.33.8822
81.
81.A. D. Becke, Phys. Rev. A 38, 3098 (1988).
http://dx.doi.org/10.1103/PhysRevA.38.3098
82.
82.F. Weigend, M. Häser, H. Patzelt, and R. Ahlrichs, Chem. Phys. Lett. 294, 143 (1998).
http://dx.doi.org/10.1016/S0009-2614(98)00862-8
83.
84.
84.T. H. Dunning, J. Chem. Phys. 90, 1007 (1989).
http://dx.doi.org/10.1063/1.456153
85.
85.N. Balabanov and K. A. Peterson, J. Chem. Phys. 123, 064107 (2005).
http://dx.doi.org/10.1063/1.1998907
86.
86.J. J. W. McDouall, K. Peasley, and M. A. Robb, Chem. Phys. Lett. 148, 183 (1988).
http://dx.doi.org/10.1016/0009-2614(88)80296-3
87.
87.K. Wolinski and P. Pulay, J. Chem. Phys. 90, 3647 (1989).
http://dx.doi.org/10.1063/1.456696
88.
88.K. Andersson, P.-A. Malmqvist, and B. O. Roos, J. Chem. Phys. 96, 1218 (1992).
http://dx.doi.org/10.1063/1.462209
89.
89.B. Jeziorski and H. J. Monkhorst, Phys. Rev. A 24, 1668 (1981).
http://dx.doi.org/10.1103/PhysRevA.24.1668
90.
90.U. S. Mahapatra, B. Datta, and D. Mukherjee, J. Chem. Phys. 110, 6171 (1999).
http://dx.doi.org/10.1063/1.478523
91.
91.F. A. Evangelista, W. D. Allen, and H. F. Schaefer III, J. Chem. Phys. 125, 154113 (2006).
http://dx.doi.org/10.1063/1.2357923
92.
92.M. Hanauer and A. Köhn, J. Chem. Phys. 134, 204111 (2011).
http://dx.doi.org/10.1063/1.3592786
93.
93.N. Oliphant and L. Adamowicz, J. Chem. Phys. 96, 3739 (1992).
http://dx.doi.org/10.1063/1.461878
94.
94.I. Shavitt, in Methods of Electronic Structure Theory, Modern Theoretical Chemistry Vol. 3, edited byH. F. Schaefer III (Plenum, New York, 1977), pp. 189276.
95.
95.W. Meyer, “Configuration expansion using pseudonatural orbitals,” in Methods of Electronic Structure Theory, edited by H. F. Schaefer (Plenum, New York, 1974), pp. 413446.
96.
96.H.-J. Werner and E.-A. Reinsch, J. Chem. Phys. 76, 3144 (1982).
http://dx.doi.org/10.1063/1.443357
97.
97.P. Borowski, K. Andersson, P. A. Malmqvist, and B. O. Roos, J. Chem. Phys. 97, 5568 (1992).
http://dx.doi.org/10.1063/1.463764
98.
98.K. Pierlot, Mol. Phys. 101, 2083 (2003);
http://dx.doi.org/10.1080/0026897031000109356
98.K. Pierlot, Int. J. Quantum Chem. 111, 3291 (2011).
http://dx.doi.org/10.1002/qua.23029
99.
99.K. Boguslawski and P. Tecmer, “Orbital entanglement in quantum chemistry,” Int. J. Quantum Chem. (published online, 2014).
http://dx.doi.org/10.1002/qua.24832
100.
100.B. O. Roos, Collect. Czech. Chem. Commun. 68, 265 (2003).
http://dx.doi.org/10.1135/cccc20030265
http://aip.metastore.ingenta.com/content/aip/journal/jcp/142/24/10.1063/1.4922352
Loading
/content/aip/journal/jcp/142/24/10.1063/1.4922352
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/142/24/10.1063/1.4922352
2015-06-23
2016-09-29

Abstract

The efficient and accurate description of the electronic structure of strongly correlated systems is still a largely unsolved problem. The usual procedures start with a multiconfigurational (usually a Complete Active Space, CAS) wavefunction which accounts for static correlation and add dynamical correlation by perturbation theory, configuration interaction, or coupled cluster expansion. This procedure requires the correct selection of the active space. Intuitive methods are unreliable for complex systems. The inexpensive black-box unrestricted natural orbital (UNO) criterion postulates that the Unrestricted Hartree-Fock (UHF) charge natural orbitals with fractional occupancy (e.g., between 0.02 and 1.98) constitute the active space. UNOs generally approximate the CAS orbitals so well that the orbital optimization in CAS Self-Consistent Field (CASSCF) may be omitted, resulting in the inexpensive UNO-CAS method. A rigorous testing of the UNO criterion requires comparison with approximate full configuration interaction wavefunctions. This became feasible with the advent of Density Matrix Renormalization Group (DMRG) methods which can approximate highly correlated wavefunctions at affordable cost. We have compared active orbital occupancies in UNO-CAS and CASSCF calculations with DMRG in a number of strongly correlated molecules: compounds of electronegative atoms (F, ozone, and NO), polyenes, aromatic molecules (naphthalene, azulene, anthracene, and nitrobenzene), radicals (phenoxy and benzyl), diradicals (-, -, and -benzyne), and transition metal compounds (nickel-acetylene and Cr). The UNO criterion works well in these cases. Other symmetry breaking solutions, with the possible exception of spatial symmetry, do not appear to be essential to generate the correct active space. In the case of multiple UHF solutions, the natural orbitals of the average UHF density should be used. The problems of the UNO criterion and their potential solutions are discussed: finding the UHF solutions, discontinuities on potential energy surfaces, and inclusion of dynamical electron correlation and generalization to excited states.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/142/24/1.4922352.html;jsessionid=K5qnsR8Pl164AwJfekbkAo3-.x-aip-live-06?itemId=/content/aip/journal/jcp/142/24/10.1063/1.4922352&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/142/24/10.1063/1.4922352&pageURL=http://scitation.aip.org/content/aip/journal/jcp/142/24/10.1063/1.4922352'
Right1,Right2,Right3,