Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/142/24/10.1063/1.4922693
1.
1.J. C. Slater, The Self-Consistent Field for Molecules and Solids (McGraw-Hill, New York, 1974).
2.
2.S. H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys. 58, 12001211 (1980).
http://dx.doi.org/10.1139/p80-159
3.
3.A. D. Becke, J. Chem. Phys. 140, 18A301 (2014).
http://dx.doi.org/10.1063/1.4869598
4.
4.J. Zaanen, G. A. Sawatzky, and J. W. Allen, Phys. Rev. Lett. 55, 418421 (1985).
http://dx.doi.org/10.1103/PhysRevLett.55.418
5.
5.A. J. Cohen, P. Mori-Sánchez, and W. Yang, Science 321, 792794 (2008).
http://dx.doi.org/10.1126/science.1158722
6.
6.W. T. Borden and E. R. Davidson, J. Am. Chem. Soc. 99, 45874594 (1977).
http://dx.doi.org/10.1021/ja00456a010
7.
7.C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785789 (1988).
http://dx.doi.org/10.1103/PhysRevB.37.785
8.
8.A. D. Becke, J. Chem. Phys. 98, 56485652 (1993).
http://dx.doi.org/10.1063/1.464913
9.
9.P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch, J. Phys. Chem. 98, 1162311627 (1994).
http://dx.doi.org/10.1021/j100096a001
10.
10.M. Ernzerhof and G. E. Scuseria, J. Chem. Phys. 110, 50295036 (1999).
http://dx.doi.org/10.1063/1.478401
11.
11.C. Adamo and V. Barone, J. Chem. Phys. 110, 61586170 (1999).
http://dx.doi.org/10.1063/1.478522
12.
12.T. Van voorhis and G. E. Scuseria, J. Chem. Phys. 109, 400410 (1998).
http://dx.doi.org/10.1063/1.476577
13.
13.Y. Zhao and D. G. Truhlar, J. Chem. Phys. 125, 194101 (2006).
http://dx.doi.org/10.1063/1.2370993
14.
14.Y. Zhao and D. Truhlar, Theor. Chem. Acc. 120, 215241 (2008).
http://dx.doi.org/10.1007/s00214-007-0310-x
15.
15.H. Iikura, T. Tsuneda, T. Yanai, and K. Hirao, J. Chem. Phys. 115, 35403544 (2001).
http://dx.doi.org/10.1063/1.1383587
16.
16.J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 38653868 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
17.
17.K. Burke, J. Chem. Phys. 136, 150901 (2012).
http://dx.doi.org/10.1063/1.4704546
18.
18.R. M. Martin, Electronic Structure: Basic Theory and Practical Methods (Cambridge university press, 2004).
19.
19.L. Kleinman and D. M. Bylander, Phys. Rev. Lett. 48, 14251428 (1982).
http://dx.doi.org/10.1103/PhysRevLett.48.1425
20.
20.D. Vanderbilt, Phys. Rev. B 41, 78927895 (1990).
http://dx.doi.org/10.1103/PhysRevB.41.7892
21.
21.N. Troullier and J. L. Martins, Phys. Rev. B 43, 19932006 (1991).
http://dx.doi.org/10.1103/PhysRevB.43.1993
22.
22.G. Galli and M. Parrinello, Phys. Rev. Lett. 69, 35473550 (1992).
http://dx.doi.org/10.1103/PhysRevLett.69.3547
23.
23.F. Gygi and A. Baldereschi, Phys. Rev. B 34, 44054408 (1986).
http://dx.doi.org/10.1103/PhysRevB.34.4405
24.
24.J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118, 82078215 (2003).
http://dx.doi.org/10.1063/1.1564060
25.
25.T. M. Henderson, A. F. Izmaylov, G. Scalmani, and G. E. Scuseria, J. Chem. Phys. 131, 044108 (2009).
http://dx.doi.org/10.1063/1.3185673
26.
26.O. A. Vydrov, J. Heyd, A. V. Krukau, and G. E. Scuseria, J. Chem. Phys. 125, 074106 (2006).
http://dx.doi.org/10.1063/1.2244560
27.
27.A. Droghetti, D. Alfè, and S. Sanvito, J. Chem. Phys. 137, 124303 (2012).
http://dx.doi.org/10.1063/1.4752411
28.
28.R. Baer, E. Livshits, and U. Salzner, Annu. Rev. Phys. Chem. 61, 85109 (2010).
http://dx.doi.org/10.1146/annurev.physchem.012809.103321
29.
29.J. H. Skone, M. Govoni, and G. Galli, Phys. Rev. B 89, 195112 (2014).
http://dx.doi.org/10.1103/PhysRevB.89.195112
30.
30.T. Stein, J. Autschbach, N. Govind, L. Kronik, and R. Baer, J. Phys. Chem. Lett. 3, 37403744 (2012).
http://dx.doi.org/10.1021/jz3015937
31.
31.J. Hubbard, Proc. R. Soc. A 276, 238257 (1963).
http://dx.doi.org/10.1098/rspa.1963.0204
32.
32.P. W. Anderson, Phys. Rev. 124, 4153 (1961).
http://dx.doi.org/10.1103/PhysRev.124.41
33.
33.N. F. Mott, Proc. Phys. Soc. Sect. A 62, 416 (1949).
http://dx.doi.org/10.1088/0370-1298/62/7/303
34.
34.J. Kondo, Prog. Theor. Phys. 32, 3749 (1964).
http://dx.doi.org/10.1143/PTP.32.37
35.
35.“The Hubbard model at half a century (Editorial),” Nat. Phys. 9, 523 (2013).
http://dx.doi.org/10.1038/nphys2759
36.
36.J. C. Slater and G. F. Koster, Phys. Rev. 94, 14981524 (1954).
http://dx.doi.org/10.1103/PhysRev.94.1498
37.
37.V. L. Campo, Jr. and M. Cococcioni, J. Phys.: Condens. Matter 22, 055602 (2010).
http://dx.doi.org/10.1088/0953-8984/22/5/055602
38.
38.H. J. Kulik and N. Marzari, J. Chem. Phys. 133, 114103 (2010).
http://dx.doi.org/10.1063/1.3489110
39.
39.S. Lany and A. Zunger, Phys. Rev. B 78, 235104 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.235104
40.
40.P. Hohenberg and W. Kohn, Phys. Rev. 136, B864B871 (1964).
http://dx.doi.org/10.1103/PhysRev.136.B864
41.
41.W. Kohn and L. J. Sham, Phys. Rev. 140, A1133A1138 (1965).
http://dx.doi.org/10.1103/PhysRev.140.A1133
42.
42.P. W. Anderson, Science 235, 11961198 (1987).
http://dx.doi.org/10.1126/science.235.4793.1196
43.
43.B. N. Cox, M. A. Coulthard, and P. Lloyd, J. Phys. F 4, 807 (1974).
http://dx.doi.org/10.1088/0305-4608/4/6/009
44.
44.J. F. Herbst, R. E. Watson, and J. W. Wilkins, Phys. Rev. B 13, 14391445 (1976).
http://dx.doi.org/10.1103/PhysRevB.13.1439
45.
45.J. F. Herbst, R. E. Watson, and J. W. Wilkins, Phys. Rev. B 17, 30893098 (1978).
http://dx.doi.org/10.1103/PhysRevB.17.3089
46.
46.P. H. Dederichs, S. Blügel, R. Zeller, and H. Akai, Phys. Rev. Lett. 53, 25122515 (1984).
http://dx.doi.org/10.1103/PhysRevLett.53.2512
47.
47.A. K. McMahan, R. M. Martin, and S. Satpathy, Phys. Rev. B 38, 66506666 (1988).
http://dx.doi.org/10.1103/PhysRevB.38.6650
48.
48.M. Schluter, M. S. Hybertsen, and N. E. Christensen, Physica C 153, 12171218 (1988).
http://dx.doi.org/10.1016/0921-4534(88)90249-3
49.
49.O. Gunnarsson, O. K. Andersen, O. Jepsen, and J. Zaanen, Phys. Rev. B 39, 17081722 (1989).
http://dx.doi.org/10.1103/PhysRevB.39.1708
50.
50.O. Gunnarsson, Phys. Rev. B 41, 514518 (1990).
http://dx.doi.org/10.1103/PhysRevB.41.514
51.
51.N. J. Mosey and E. A. Carter, Phys. Rev. B 76, 155123 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.155123
52.
52.N. J. Mosey, P. Liao, and E. A. Carter, J. Chem. Phys. 129, 014103 (2008).
http://dx.doi.org/10.1063/1.2943142
53.
53.M. Cococcioni and S. de Gironcoli, Phys. Rev. B 71, 035105 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.035105
54.
54.H. J. Kulik, M. Cococcioni, D. A. Scherlis, and N. Marzari, Phys. Rev. Lett. 97, 103001 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.103001
55.
55.W. Pickett, S. Erwin, and E. Ethridge, Phys. Rev. B 58, 1201 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.1201
56.
56.O. K. Andersen, Z. Pawlowska, and O. Jepsen, Phys. Rev. B 34, 52535269 (1986).
http://dx.doi.org/10.1103/PhysRevB.34.5253
57.
57.J. F. Janak, Phys. Rev. B 18, 71657168 (1978).
http://dx.doi.org/10.1103/PhysRevB.18.7165
58.
58.I. V. Solovyev and P. H. Dederichs, Phys. Rev. B 49, 67366740 (1994).
http://dx.doi.org/10.1103/PhysRevB.49.6736
59.
59.J. P. Perdew, R. G. Parr, M. Levy, and J. L. Balduz, Phys. Rev. Lett. 49, 16911694 (1982).
http://dx.doi.org/10.1103/PhysRevLett.49.1691
60.
60.H. J. Kulik and N. Marzari, J. Chem. Phys. 129, 134314 (2008).
http://dx.doi.org/10.1063/1.2987444
61.
61.H. J. Kulik, L. C. Blasiak, N. Marzari, and C. L. Drennan, J. Am. Chem. Soc. 131, 1442614433 (2009).
http://dx.doi.org/10.1021/ja905206k
62.
62.H. J. Kulik and N. Marzari, in Fuel Cell Science: Theory, Fundamentals, and Bio-Catalysis, edited by J. Norskov and A. Wiezcowski (Wiley, 2010), pp. 433455.
63.
63.U. G. E. Perera, H. J. Kulik, V. Iancu, L. G. G. V. D. da Silva, S. E. Ulloa, N. Marzari, and S.-W. Hla, Phys. Rev. Lett. 105, 106601 (2010).
http://dx.doi.org/10.1103/physrevlett.105.106601
64.
64.H. J. Kulik and N. Marzari, J. Chem. Phys. 135, 194105 (2011).
http://dx.doi.org/10.1063/1.3660353
65.
65.F. Zhou, M. Cococcioni, C. A. Marianetti, D. Morgan, and G. Ceder, Phys. Rev. B 70, 235121 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.235121
66.
66.S. Fabris, S. de Gironcoli, S. Baroni, G. Vicario, and G. Balducci, Phys. Rev. B 71, 041102(R) (2005).
http://dx.doi.org/10.1103/PhysRevB.71.041102
67.
67.P. E. Blöchl, Phys. Rev. B 50, 1795317979 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.17953
68.
68.O. Gunnarsson, N. E. Christensen, and O. K. Andersen, J. Magn. Magn. Mater. 76–77, 3034 (1988).
http://dx.doi.org/10.1016/0304-8853(88)90309-5
69.
69.J. Zaanen, O. Jepsen, O. Gunnarsson, A. T. Paxton, O. K. Andersen, and A. Svane, Physica C 153, 16361641 (1988).
http://dx.doi.org/10.1016/0921-4534(88)90436-4
70.
70.V. I. Anisimov and O. Gunnarsson, Phys. Rev. B 43, 75707574 (1991).
http://dx.doi.org/10.1103/PhysRevB.43.7570
71.
71.V. I. Anisimov, J. Zaanen, and O. K. Andersen, Phys. Rev. B 44, 943954 (1991).
http://dx.doi.org/10.1103/PhysRevB.44.943
72.
72.A. I. Liechtenstein, V. I. Anisimov, and J. Zaanen, Phys. Rev. B 52, R5467R5470 (1995).
http://dx.doi.org/10.1103/PhysRevB.52.R5467
73.
73.S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, Phys. Rev. B 57, 15051509 (1998).
http://dx.doi.org/10.1103/PhysRevB.57.1505
74.
74.B. Himmetoglu, A. Floris, S. de Gironcoli, and M. Cococcioni, Int. J. Quantum Chem. 114, 1449 (2014).
http://dx.doi.org/10.1002/qua.24521
75.
75.L. Wang, T. Maxisch, and G. Ceder, Phys. Rev. B 73, 195107 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.195107
76.
76.C. Loschen, J. Carrasco, K. Neyman, and F. Illas, Phys. Rev. B 75, 035115 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.035115
77.
77.M. Huang and S. Fabris, J. Phys. Chem. C 112, 86438648 (2008).
http://dx.doi.org/10.1021/jp709898r
78.
78.B. Meredig, A. Thompson, H. A. Hansen, C. Wolverton, and A. van de Walle, Phys. Rev. B 82, 195128 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.195128
79.
79.R. M. Wentzcovitch, H. Hsu, and K. Umemoto, Eur. J. Mineral. 24, 851862 (2012).
http://dx.doi.org/10.1127/0935-1221/2012/0024-2249
80.
80.H. J. Kulik and N. Marzari, J. Chem. Phys. 134, 094103 (2011).
http://dx.doi.org/10.1063/1.3559452
81.
81.J. P. Perdew and M. Levy, Phys. Rev. Lett. 51, 18841887 (1983).
http://dx.doi.org/10.1103/PhysRevLett.51.1884
82.
82.L. J. Sham and M. Schlüter, Phys. Rev. Lett. 51, 18881891 (1983).
http://dx.doi.org/10.1103/PhysRevLett.51.1888
83.
83.M. K. Y. Chan and G. Ceder, Phys. Rev. Lett. 105, 196403 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.196403
84.
84.A. N. Andriotis, G. Mpourmpakis, S. Lisenkov, R. M. Sheetz, and M. Menon, Phys. Status Solidi B 250, 356363 (2013).
http://dx.doi.org/10.1002/pssb.201248215
85.
85.S. Kümmel and L. Kronik, Rev. Mod. Phys. 80, 360 (2008).
http://dx.doi.org/10.1103/RevModPhys.80.3
86.
86.S. Lutfalla, V. Shapovalov, and A. T. Bell, J. Chem. Theory Comput. 7, 22182223 (2011).
http://dx.doi.org/10.1021/ct200202g
87.
87.E. Finazzi, C. Di Valentin, G. Pacchioni, and A. Selloni, J. Chem. Phys. 129, 154113 (2008).
http://dx.doi.org/10.1063/1.2996362
88.
88.C. J. Fennie and K. M. Rabe, Phys. Rev. Lett. 97, 267602 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.267602
89.
89.I. Grinberg, D. V. West, M. Torres, G. Gou, D. M. Stein, L. Wu, G. Chen, E. M. Gallo, A. R. Akbashev, P. K. Davies, J. E. Spanier, and A. M. Rappe, Nature 503, 509512 (2013).
http://dx.doi.org/10.1038/nature12622
90.
90.T. Koopmans, Physica 1, 104113 (1934).
http://dx.doi.org/10.1016/S0031-8914(34)90011-2
91.
91. Some of you may be most familiar with me through my electronic structure tutorials that first started in an attempt to better explain DFT+U and help people avoid some of my early challenges in applying the method broadly (http://hjklol.mit.edu/Tutorials). It is a delight for me to hear occasionally that these resources are still helpful to some of you, but unfortunately my current job keeps me busier than I expected and away from adding new tutorials or responding to queries. I hope that my students will someday pick up the torch and begin our tutorial series anew as they and I learn new codes and skills together.
http://aip.metastore.ingenta.com/content/aip/journal/jcp/142/24/10.1063/1.4922693
Loading
/content/aip/journal/jcp/142/24/10.1063/1.4922693
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/142/24/10.1063/1.4922693
2015-06-22
2016-10-01

Abstract

Many people in the materials science and solid-state community are familiar with the acronym “DFT+U.” For those less familiar, this technique uses ideas from model Hamiltonians that permit the description of both metals and insulators to address problems of electron over-delocalization in practical implementations of density functional theory (DFT). Exchange-correlation functionals in DFT are often described as belonging to a hierarchical “Jacob’s ladder” of increasing accuracy in moving from local to non-local descriptions of exchange and correlation. DFT+U is not on this “ladder” but rather acts as an “elevator” because it systematically tunes relative energetics, typically on a localized subshell (e.g., or electrons), regardless of the underlying functional employed. However, this tuning is based on a metric of the local electron density of the subshells being addressed, thus necessitating physical or chemical or intuition about the system of interest. I will provide a brief overview of the history of how DFT+U came to be starting from the origin of the Hubbard and Anderson model Hamiltonians. This history lesson is necessary because it permits us to make the connections between the “Hubbard U” and fundamental outstanding challenges in electronic structure theory, and it helps to explain why this method is so widely applied to transition-metal oxides and organometallic complexes alike.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/142/24/1.4922693.html;jsessionid=1qon2QaicD-2nZDTAufHnOJa.x-aip-live-02?itemId=/content/aip/journal/jcp/142/24/10.1063/1.4922693&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/142/24/10.1063/1.4922693&pageURL=http://scitation.aip.org/content/aip/journal/jcp/142/24/10.1063/1.4922693'
Right1,Right2,Right3,