Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/142/24/10.1063/1.4922987
1.
1.L. A. Collins and N. F. Lane, Phys. Rev. A 14, 1358 (1976).
http://dx.doi.org/10.1103/PhysRevA.14.1358
2.
2.R. V. Krems, A. A. Buchachenko, N. Marković, and S. Nordholm, Chem. Phys. Lett. 335, 273 (2001).
http://dx.doi.org/10.1016/S0009-2614(01)00041-0
3.
3.M. Lanza and F. Lique, Mon. Not. R. Astron. Soc. 424, 1261 (2012).
http://dx.doi.org/10.1111/j.1365-2966.2012.21304.x
4.
4.H. K. Shin, Chem. Phys. Lett. 228, 678 (1994).
http://dx.doi.org/10.1016/0009-2614(94)01002-1
5.
5.E. A. Wade, K. T. Lorenz, J. L. Springfield, and D. W. Chandler, J. Phys. Chem. A 107, 4976 (2003).
http://dx.doi.org/10.1021/jp027601s
6.
6.M. Lanza, Y. Kalugina, L. Wiesenfeld, and F. Lique, J. Chem. Phys. 140, 064316 (2014).
http://dx.doi.org/10.1063/1.4864359
7.
7.G. A. Blake, J. Keene, and T. G. Phillips, Astrophys. J. 295, 501 (1985).
http://dx.doi.org/10.1086/163394
8.
8.P. Schilke, T. G. Phillips, and N. Wang, Astrophys. J. 441, 334 (1995).
http://dx.doi.org/10.1086/175358
9.
9.D. A. Neufeld and M. G. Wolfire, Astrophys. J. 706, 1594 (2009).
http://dx.doi.org/10.1088/0004-637X/706/2/1594
10.
10.M. Kama, E. Caux, A. López-Sepulcre, V. Wakelam, C. Dominik, C. Ceccarelli, M. Lanza, F. Lique, B. B. Ochsendorf, D. C. Lis, R. N. Caballero, and A. G. G. M. Tielens, Astron. Astrophys. 574, A107 (2015).
http://dx.doi.org/10.1051/0004-6361/201424737
11.
11.E. Roueff and F. Lique, Chem. Rev. 113, 8906 (2013).
http://dx.doi.org/10.1021/cr400145a
12.
12.D. A. Neufeld and S. Green, Astrophys. J. 432, 158 (1994).
http://dx.doi.org/10.1086/174557
13.
13.B. Yang and P. C. Stancil, Astrophys. J. 783, 92 (2014).
http://dx.doi.org/10.1088/0004-637X/783/2/92
14.
14.M. Lanza, Y. Kalugina, L. Wiesenfeld, A. Faure, and F. Lique, Mon. Not. R. Astron. Soc. 443, 3351 (2014).
http://dx.doi.org/10.1093/mnras/stu1371
15.
15.M. Lanza and F. Lique, J. Chem. Phys. 141, 164321 (2014).
http://dx.doi.org/10.1063/1.4898855
16.
16.R. R. Monje, D. C. Lis, E. Roueff, M. Gerin, M. De Luca, D. A. Neufeld, B. Godard, and T. G. Phillips, Astrophys. J. 767, 81 (2013).
http://dx.doi.org/10.1088/0004-637X/767/1/81
17.
17.U. Manthe, W. Bian, and H.-J. Werner, Chem. Phys. Lett. 313, 647 (1999).
http://dx.doi.org/10.1016/S0009-2614(99)00998-7
18.
18.M. H. Alexander, G. Capecchi, and H.-J. Werner, Science 296, 715 (2002).
http://dx.doi.org/10.1126/science.1070472
19.
19.N. Balucani, D. Skouteris, L. Cartechini, G. Capozza, E. Segoloni, P. Casavecchia, M. H. Alexander, G. Capecchi, and H.-J. Werner, Phys. Rev. Lett. 91, 013201 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.013201
20.
20.F. Lique and M. H. Alexander, J. Chem. Phys. 136, 124312 (2012).
http://dx.doi.org/10.1063/1.3697541
21.
21.H. Song, S.-Y. Lee, Z. Sun, and Y. Lu, J. Chem. Phys. 138, 054305 (2013).
http://dx.doi.org/10.1063/1.4790116
22.
22.W. Bian and H.-J. Werner, J. Chem. Phys. 112, 220 (2000).
http://dx.doi.org/10.1063/1.480574
23.
23.G. Capecchi and H. Werner, Phys. Chem. Chem. Phys. 6, 4975 (2004).
http://dx.doi.org/10.1039/b411385c
24.
24.H.-J. Werner and P. J. Knowles, J. Chem. Phys. 89, 5803 (1988).
http://dx.doi.org/10.1063/1.455556
25.
25.D. Skouteris, J. F. Castillo, and D. E. Manolopoulos, Comput. Phys. Commun. 133, 128 (2000).
http://dx.doi.org/10.1016/S0010-4655(00)00167-3
26.
26.L. Tao and M. H. Alexander, J. Chem. Phys. 127, 114301 (2007).
http://dx.doi.org/10.1063/1.2766716
27.
27.C. Clay Marston and G. G. Balint-Kurti, J. Chem. Phys. 91, 3571 (1989).
http://dx.doi.org/10.1063/1.456888
28.
28.RKR1 is R. J. Le Roy’s program for applying the first-order Rydberg-Klein-Rees procedure to spectroscopic constants for a diatomic molecule to determine its potential energy function. See http://scienide2.uwaterloo.ca/~rleroy/rkr/.
29.
29.J. M. Hutson and S. Green, molscat computer code, version 14, distributed by Collaborative Computational Project No. 6 of the Engineering and Physical Sciences Research Council, UK, 1994.
30.
30.Y. Kalugina, F. Lique, and S. Marinakis, Phys. Chem. Chem. Phys. 16, 13500 (2014).
http://dx.doi.org/10.1039/c4cp01473a
31.
31.F. Lique and A. Faure, J. Chem. Phys. 136, 031101 (2012).
http://dx.doi.org/10.1063/1.3678310
32.
32.A. R. Offer, M. C. van Hemert, and E. F. van Dishoeck, J. Chem. Phys. 100, 362 (1994).
http://dx.doi.org/10.1063/1.466950
33.
33.Y. Kalugina, J. Kłos, and F. Lique, J. Chem. Phys. 139, 074301 (2013).
http://dx.doi.org/10.1063/1.4817933
http://aip.metastore.ingenta.com/content/aip/journal/jcp/142/24/10.1063/1.4922987
Loading
/content/aip/journal/jcp/142/24/10.1063/1.4922987
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/142/24/10.1063/1.4922987
2015-06-24
2016-10-01

Abstract

We report fully quantum time-independent calculations of cross sections for the collisional excitation of HCl by H, an astrophysically relevant process. Our calculations are based on the Bian-Werner ClH potential energy surface and include the possibility of HCl destruction through reactive collisions. The strongest collision-induced rotational HCl transitions are those with Δ = 1, and the magnitude of the HCl-H inelastic cross sections is of the same order of magnitude as the HCl-H ones. Results of exact calculations, i.e., including the reactive channels, are compared to pure inelastic calculations based on the rigid rotor approximation. A very good agreement is found between the two approaches over the whole energy range 10–3000 cm−1. At the highest collisional energies, where the reaction takes place, the rigid rotor approach slightly overestimates the cross sections, as expected. Hence, the rigid rotor approach is found to be reliable at interstellar temperatures.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/142/24/1.4922987.html;jsessionid=UBpsm1FJT1AqcQ6ArVvAEh7k.x-aip-live-03?itemId=/content/aip/journal/jcp/142/24/10.1063/1.4922987&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/142/24/10.1063/1.4922987&pageURL=http://scitation.aip.org/content/aip/journal/jcp/142/24/10.1063/1.4922987'
Right1,Right2,Right3,