Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/142/3/10.1063/1.4905271
1.
1.J. I. Musher, Angew. Chem., Int. Ed. 8, 54 (1969).
http://dx.doi.org/10.1002/anie196900541
2.
2.P. v. R. Schleyer, Chem. Eng. News 62, 4 (1984).
http://dx.doi.org/10.1021/cen-v062n049.p004
3.
3. R. E. Rundle, J. Am. Chem. Soc. 85, 1327 (1947);
http://dx.doi.org/10.1021/ja01198a02885
3. R. E. Rundle, J. Am. Chem. Soc. 85, 112 (1963).
http://dx.doi.org/10.1021/ja00884a026
4.
4.G. Pimentel, J. Chem. Phys. 19, 446 (1951).
http://dx.doi.org/10.1063/1.1748245
5.
5. I. Mayer, J. Mol. Struct.: THEOCHEM 186, 43 (1989);
http://dx.doi.org/10.1016/0166-1280(89)87037-X
5. J. G. Ángyán, J. Mol. Struct.: THEOCHEM 186, 61 (1989).
http://dx.doi.org/10.1016/0166-1280(89)87039-3
6.
6.D. E. Woon and T. H. Dunning, Jr., Mol. Phys. 107, 991 (2009).
http://dx.doi.org/10.1080/00268970802712431
7.
7.D. E. Woon and T. H. Dunning, Jr., J. Phys. Chem. A 113, 7915 (2009).
http://dx.doi.org/10.1021/jp901949b
8.
8.L. Chen, D. E. Woon, and T. H. Dunning, Jr., J. Phys. Chem. A 113, 12645 (2009).
http://dx.doi.org/10.1021/jp905064v
9.
9.D. E. Woon and T. H. Dunning, Jr., J. Phys. Chem. A 114, 8845 (2010).
http://dx.doi.org/10.1021/jp102236a
10.
10.J. Leiding, D. E. Woon, and T. H. Dunning, Jr., J. Phys. Chem. A 115, 329 (2011).
http://dx.doi.org/10.1021/jp107916c
11.
11.J. Leiding, D. E. Woon, and T. H. Dunning, Jr., J. Phys. Chem. A 115, 4757 (2011).
http://dx.doi.org/10.1021/jp2004024
12.
12.D. E. Woon and T. H. Dunning, Jr., Comput. Theor. Chem. 963, 7 (2011).
http://dx.doi.org/10.1016/j.comptc.2010.10.003
13.
13.J. Leiding, D. E. Woon, and T. H. Dunning, Jr., J. Phys. Chem. A 116, 1655 (2012).
http://dx.doi.org/10.1021/jp210092d
14.
14.T. H. Dunning, Jr., D. E. Woon, J. Leiding, and L. Chen, Acc. Chem. Res. 46, 359 (2013).
http://dx.doi.org/10.1021/ar300154a
15.
15.B. A. Lindquist, T. Y. Takeshita, D. E. Woon, and T. H. Dunning, Jr., J. Chem. Theory Comput. 9, 4444 (2013).
http://dx.doi.org/10.1021/ct4006536
16.
16.B. A. Lindquist and T. H. Dunning, Jr., Theor. Chem. Acc. 133, 1443 (2014).
http://dx.doi.org/10.1007/s00214-013-1443-8
17.
17. W. A. Goddard III, Phys. Rev. 157, 73 (1967);
http://dx.doi.org/10.1103/PhysRev.157.73
17. W. A. Goddard III, Phys. Rev. 157, 81 (1967)
http://dx.doi.org/10.1103/PhysRev.157.81
17. W. A. Goddard III, J. Chem. Phys. 48, 450 (1968);
http://dx.doi.org/10.1063/1.1667943
17. R. C. Ladner and W. A. Goddard III, J. Chem. Phys. 51, 1073 (1969);
http://dx.doi.org/10.1063/1.1672106
17. R. J. Blint, W. A. Goddard III, R. C. Ladner, and W. E. Palke, Chem. Phys. Lett. 5, 302 (1970);
http://dx.doi.org/10.1016/0009-2614(70)85147-8
17. W. A. Goddard III and R. J. Blint, Chem. Phys. Lett. 14, 616 (1972).
http://dx.doi.org/10.1016/0009-2614(72)87222-1
18.
18. W. A. Goddard III, T. H. Dunning, Jr., W. J. Hunt, and P. J. Hay, Acc. Chem. Res. 6, 368 (1973);
http://dx.doi.org/10.1021/ar50071a002
18. W. A. Goddard III and L. B. Harding, Ann. Rev. Phys. Chem. 29, 363 (1978).
http://dx.doi.org/10.1146/annurev.pc.29.100178.002051
19.
19.F. Penotti, J. Gerrat, D. L. Cooper, and M. Raimondi, J. Mol. Struct.: THEOCHEM 169, 421 (1988).
http://dx.doi.org/10.1016/0166-1280(88)80274-4
20.
20. W. Heitler and F. London, Z. Phys. 44, 455 (1927);
http://dx.doi.org/10.1007/BF01397394
20.see also L. Pauling and E. B. Wilson, Jr., Introduction to Quantum Mechanics with Applications to Chemistry (McGraw Hill, New York, 1935).
21.
21. J. Gerratt and W. N. Lipscomb, Proc. Natl. Acad. Sci. U.S.A. 59, 332335 (1968);
http://dx.doi.org/10.1073/pnas.59.2.332
21. J. Gerratt, Adv. At. Mol. Phys. 7, 141 (1971).
http://dx.doi.org/10.1016/S0065-2199(08)60360-7
22.
22.T. Thorsteinsson and D. L. Cooper, “Basic problems and models systems,” in Quantum Systems in Chemistry and Physics, edited by A. Hernández-Laguna, J. Maruani, R. McWeeny, and S. Wilson (Kluwer, Dordrecht, 2000), Vol. 1, p. 303.
23.
23.T. H. Dunning, Jr., T. Y. Takeshita, and L. T. Xu, J. Chem. Phys. 142, 034114 (2015).
http://dx.doi.org/10.1063/1.4905272
24.
24. For example in the CH(X2Π) state where the carbon 2pz and hydrogen 1s orbitals are involved in bond formation, the (2s, 2s+) orbitals rotate away from the forming CH bond; see Refs. 17 and 18.
25.
25.B. O. Roos, J. Int. J. Quantum Chem. 18(S14), 175 (1980), and references therein.
http://dx.doi.org/10.1002/qua.560180822
26.
26.K. Ruedenberg, M. W. Schmidt, M. M. Gilbert, and S. T. Elbert, Chem. Phys. 71, 41 (1982) and other papers in the series.
http://dx.doi.org/10.1016/0301-0104(82)87004-3
27.
27.J. Gerratt, D. L. Cooper, P. B. Karadakov, and M. Raimondi, Chem. Soc. Rev. 26, 87 (1997), and references therein.
http://dx.doi.org/10.1039/cs9972600087
28.
28. M. Kotani, Proc. Phys.-Math. Soc. Jpn. 19, 460 (1937);
28. M. Kotani and M. Siga, Proc. Phys.-Math. Soc. Jpn. 19, 471 (1937).
29.
29. K. Ragavachari, G. W. Trucks, J. A. Pople, and M. Head-Gordon, Chem. Phys. Lett. 157, 479 (1989);
http://dx.doi.org/10.1016/S0009-2614(89)87395-6
29. P. J. Knowles, C. Hampel, and H.-J. Werner, J. Chem. Phys. 99, 5219 (1993).
http://dx.doi.org/10.1063/1.465990
30.
30.H.-J. Werner and P. J. Knowles, J. Chem. Phys. 89, 5803 (1988).
http://dx.doi.org/10.1063/1.455556
31.
31.S. R. Langhoff and E. R. Davidson, Int. J. Quantum Chem. 8, 61 (1974).
http://dx.doi.org/10.1002/qua.560080106
32.
32.H.-J. Werner, P. J. Knowles, R. Lindh, F. R. Manby, M. Schütz et al., MOLPRO, version 2009.1, a package of ab initio programs, 2009, see http://www.molpro.net.
33.
33.T. H. Dunning, Jr., J. Chem. Phys. 90, 1007 (1989).
http://dx.doi.org/10.1063/1.456153
34.
34.T. H. Dunning, Jr., K. A. Peterson, and A. K. Wilson, J. Chem. Phys. 114, 9244 (2001).
http://dx.doi.org/10.1063/1.1367373
35.
35.J. Linderberg and H. Shull, J. Mol. Spectros. 5, 1 (1960).
http://dx.doi.org/10.1016/0022-2852(61)90059-5
36.
36.E. Clementi and A. Veillard, J. Chem. Phys. 44, 3050 (1966).
http://dx.doi.org/10.1063/1.1727179
37.
37.See supplementary material at http://dx.doi.org/10.1063/1.4905271 for the results of restricted GVB calculations, GVB(SO) and GVB(PP/SO), on the X2Π and a4Σ states of the CF and SF molecules as well as an assessment of the impact of dynamical correlation on the GVB description of these two states.[Supplementary Material]
38.
38. W. A. Goddard III, J. Am. Chem. Soc. 92, 7520 (1970);
http://dx.doi.org/10.1021/ja00728a07394
38. W. A. Goddard III, J. Am. Chem. Soc. 94, 793 (1972).
http://dx.doi.org/10.1021/ja00758a019
39.
39.R. J. Gillespie and P. L. A. Popelier, Chemical Bonding and Molecular Geometry (Oxford University Press, Oxford, 2001).
40.
40.R. D. Amos and G. Doggett, Mol. Phys. 29, 1117 (1975).
http://dx.doi.org/10.1080/00268977500100951
41.
41.P. J. Hay, J. Am. Chem. Soc. 99, 1003 (1977).
http://dx.doi.org/10.1021/ja00446a005
42.
42.J. K. Park and H. Sun, Chem. Phys. Lett. 194, 485 (1992).
http://dx.doi.org/10.1016/0009-2614(92)86088-Y
43.
43.V. Brites, D. Hammoutène, and M. Hochlaf, J. Phys. B.: At. Mol. Opt. Phys. 41, 045101 (2008).
http://dx.doi.org/10.1088/0953-4075/41/4/045101
44.
44.X. Yang and J. E. Boggs, J. Chem. Phys. 122, 194307 (2005).
http://dx.doi.org/10.1063/1.1897380
45.
45.B. A. Lindquist, D. E. Woon, and T. H. Dunning, Jr., J. Phys. Chem. A 118, 5709 (2014).
http://dx.doi.org/10.1021/jp503982e
46.
46. D. L. Hildenbrand, Chem. Phys. Lett. 32, 523 (1975);
http://dx.doi.org/10.1016/0009-2614(75)85231-6
46. T. L. Porter, D. E. Mann, and N. Acquista, J. Mol. Spectrosc. 16, 228 (1965).
http://dx.doi.org/10.1016/0022-2852(65)90121-9
47.
47.S. Saito, Y. Endo, M. Takami, and E. Hirota, J. Chem. Phys. 78, 116 (1983).
http://dx.doi.org/10.1063/1.444531
48.
48.T. Kiang and R. N. Zare, J. Am. Chem. Soc. 102, 4024 (1980), corrected with the computed value of ωe in Ref. 6.
http://dx.doi.org/10.1021/ja00532a008
49.
49.T. Amano and E. Hirota, J. Mol. Spectrosc. 45, 417 (1973).
http://dx.doi.org/10.1016/0022-2852(73)90212-9
http://aip.metastore.ingenta.com/content/aip/journal/jcp/142/3/10.1063/1.4905271
Loading
/content/aip/journal/jcp/142/3/10.1063/1.4905271
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/142/3/10.1063/1.4905271
2015-01-16
2016-12-06

Abstract

The number of singly occupied orbitals in the ground-state atomic configuration of an element defines its valence. For carbon and sulfur, with two singly occupied orbitals in their 3P ground states, the nominal valence is two. However, in both cases, it is possible to form more bonds than indicated by the nominal valence—up to four bonds for carbon and six bonds for sulfur. In carbon, the electrons in the 2s lone pair can participate in bonding, and in sulfur the electrons in both the 3p and 3s lone pairs can participate. Carbon 2s and sulfur 3p are the basis for the tetravalence of carbon and sulfur, and 3s recoupled pair bonds enable sulfur to be hexavalent. In this paper, we report generalized valence bond as well as more accurate calculations on the 4Σ states of CF and SF, which are archetypal examples of molecules that possess recoupled pair bonds. These calculations provide insights into the fundamental nature of recoupled pair bonds and illustrate the key differences between recoupled pair bonds formed with the 2s lone pair of carbon, as a representative of the early p-block elements, and recoupled pair bonds formed with the 3p lone pair of sulfur, as a representative of the late p-block elements.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/142/3/1.4905271.html;jsessionid=t3tEGN0LqfpLde6tx2K9vp4U.x-aip-live-06?itemId=/content/aip/journal/jcp/142/3/10.1063/1.4905271&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/142/3/10.1063/1.4905271&pageURL=http://scitation.aip.org/content/aip/journal/jcp/142/3/10.1063/1.4905271'
Right1,Right2,Right3,