Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/142/4/10.1063/1.4905603
1.
1.H. Kanno and C. A. Angell, “Water: Anomalous compressibilities to 1.9 kbar and correlation with supercooling limits,” J. Chem. Phys. 70, 4008 (1979).
http://dx.doi.org/10.1063/1.438021
2.
2.R. J. Speedy and C. A. Angell, “Isothermal compressibility of supercooled water and evidence for a thermodynamic singularity at −45 °C,” J. Chem. Phys. 65, 851 (1976).
http://dx.doi.org/10.1063/1.433153
3.
3.C. Huang et al., “Increasing correlation length in bulk supercooled H2O, D2O, and NaCl solution determined from small angle x-ray scattering,” J. Chem. Phys. 133, 134504 (2010).
http://dx.doi.org/10.1063/1.3495974
4.
4.B. J. Mason, “The supercooling and nucleation of water,” Adv. Phys. 7, 221234 (1958).
http://dx.doi.org/10.1080/00018735800101237
5.
5.P. H. Poole, F. Sciortino, U. Essmann, and H. E. Stanley, “Phase-behavior of metastable water,” Nature 360, 324328 (1992).
http://dx.doi.org/10.1038/360324a0
6.
6.S. Sastry, P. G. Debenedetti, F. Sciortino, and H. E. Stanley, “Singularity-free interpretation of the thermodynamics of supercooled water,” Phys. Rev. E 53, 61446154 (1996).
http://dx.doi.org/10.1103/PhysRevE.53.6144
7.
7.C. A. Angell, “Insights into phases of liquid water from study of its unusual glass-forming properties,” Science 319, 582 (2008).
http://dx.doi.org/10.1126/science.1131939
8.
8.D. T. Limmer and D. Chandler, “The putative liquid-liquid transition is a liquid-solid transition in atomistic models of water,” J. Chem. Phys. 135, 134503 (2011).
http://dx.doi.org/10.1063/1.3643333
9.
9.P. Gallo and F. Sciortino, “Ising universality class for the liquid-liquid critical point of a one component fluid: A finite-size scaling test,” Phys. Rev. Lett. 106, 177801 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.177801
10.
10.T. A. Kesselring, G. Franzese, S. V. Buldyrev, H. J. Herrmann, and H. E. Stanley, “Nanoscale dynamics of phase flipping in water near its hypothesized liquid-liquid critical point,” Sci. Rep. 2, 474 (2012).
http://dx.doi.org/10.1038/srep00474
11.
11.T. A. Kesselring, E. Lascaris, G. Franzese, and H. E. Stanley, “Finite-size scaling investigation of the liquid-liquid critical point in ST2 water and its stability with respect to crystallization,” J. Chem. Phys. 138, 244506 (2013).
http://dx.doi.org/10.1063/1.4808355
12.
12.D. T. Limmer and D. Chandler, “The putative liquid-liquid transition is a liquid-solid transition in atomistic models of water. II,” J. Chem. Phys. 138, 214504 (2013).
http://dx.doi.org/10.1063/1.4807479
13.
13.J. C. Palmer, R. Car, and P. G. Debenedetti, “The liquid-liquid transition in supercooled ST2 water: A comparison between umbrella sampling and well-tempered dynamics,” Faraday Discuss. 167, 7794 (2013).
http://dx.doi.org/10.1039/c3fd00074e
14.
14.J. C. Palmer et al., “Metastable–liquid-liquid transition in a molecular model of water,” Nature 510, 385–388 (2014).
http://dx.doi.org/10.1038/nature13405
15.
15.R. J. Speedy, “Stability-limit conjecture. An interpretation of the properties of water,” J. Phys. Chem. 86, 982 (1982).
http://dx.doi.org/10.1021/j100395a030
16.
16.E. B. Moore and V. Molinero, “Structural transformation in supercooled water controls the crystallization rate of ice,” Nature 479, 506508 (2011).
http://dx.doi.org/10.1038/nature10586
17.
17.J. A. Sellberg et al., “Ultrafast X-ray probing of water structure below the homogeneous ice nucleation temperature,” Nature 510, 381384 (2014).
http://dx.doi.org/10.1038/nature13266
18.
18.A. Nilsson and L. G. M. Pettersson, “Perspective on the structure of liquid water,” Chem. Phys. 389, 134 (2011).
http://dx.doi.org/10.1016/j.chemphys.2011.07.021
19.
19.O. Fuchs et al., “Isotope and temperature effects in liquid water probed by x-ray absorption and resonant x-ray emission spectroscopy,” Phys. Rev. Lett. 100, 027801 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.027801
20.
20.T. Tokushima et al., “High resolution x-ray emission spectroscopy of liquid water: The observation of two structural motifs,” Chem. Phys. Lett. 460, 387400 (2008).
http://dx.doi.org/10.1016/j.cplett.2008.04.077
21.
21.K. M. Lange et al., “High resolution x-ray emission spectroscopy of water and aqueous ions using the micro-jet technique,” Chem. Phys. 377, 15 (2010).
http://dx.doi.org/10.1016/j.chemphys.2010.08.023
22.
22.K. M. Lange et al., “On the origin of the hydrogen-bond-network nature of water: X-ray absorption and emission spectra of water-acetonitrile mixtures,” Angew. Chem. 123, 16 (2011).
http://dx.doi.org/10.1002/ange.201104161
23.
23.K. M. Lange et al., “X-ray emission from pure and dilute H2O and D2O in a liquid microjet: Hydrogen bonds and nuclear dynamics,” Phys. Rev. B 85, 155104 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.155104
24.
24.A. Nilsson, C. Huang, and L. G. M. Pettersson, “Fluctuations in ambient water,” J. Mol. Liq. 176, 216 (2012).
http://dx.doi.org/10.1016/j.molliq.2012.06.021
25.
25.A. Nilsson et al., “Resonant inelastic x-ray scattering of liquid water,” J. El. Struc. Rel. Phenom. 188, 84100 (2013).
http://dx.doi.org/10.1016/j.elspec.2012.09.011
26.
26.T. Tokushima et al., “High resolution x-ray emission spectroscopy of water and its assignment based on two structural motifs,” J. Electron Spectrosc. Relat. Phenom. 177, 192205 (2010).
http://dx.doi.org/10.1016/j.elspec.2010.02.008
27.
27.T. Tokushima et al., “Polarization dependent resonant x-ray emission spectroscopy of D2O and H2O water: Assignment of the local molecular orbital symmetry,” J. Chem. Phys. 136, 044517 (2012).
http://dx.doi.org/10.1063/1.3678443
28.
28.C. Huang et al., “The inhomogeneous structure of water at ambient conditions,” Proc. Natl. Acad. Sci. U. S. A. 106, 1521415218 (2009).
http://dx.doi.org/10.1073/pnas.0904743106
29.
29.L. G. M. Pettersson and A. Nilsson, “The structure of water; from ambient to deeply supercooled,” J. Non-Cryst. Solids 407, 399417 (2015).
http://dx.doi.org/10.1016/j.jnoncrysol.2014.08.026
30.
30.O. Fuchs et al., “Response to “Comment on ‘Isotope and temperature effects in liquid water probed by x-ray absorption and resonant x-ray emission spectroscopy,”’'' Phys. Rev. Lett. 100, 249802 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.249802
31.
31.M. Odelius, “Information content in O[1s] k-edge x-ray emission spectroscopy of liquid water,” J. Phys. Chem. A 113, 81768181 (2009).
http://dx.doi.org/10.1021/jp903096k
32.
32.M. Odelius, “Molecular dynamics simulations of fine structure in oxygen k-edge x-ray emission spectra of liquid water and ice,” Phys. Rev. B 79, 144204 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.144204
33.
33.J. Forsberg et al., “Angular anisotropy of resonant inelastic soft x-ray scattering from liquid water,” Phys. Rev. B 79, 132203 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.132203
34.
34.M. P. Ljungberg, A. Nilsson, and L. G. M. Pettersson, “Semi-classical description of nuclear dynamics in x-ray emission of water,” Phys. Rev. B 82, 245115 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.245115
35.
35.M. P. Ljungberg, L. G. M. Pettersson, and A. Nilsson, “Vibrational interference effects in x-ray emission of a model water dimer: Implications for the interpretation of the liquid spectrum,” J. Chem. Phys. 134, 044513 (2011).
http://dx.doi.org/10.1063/1.3533956
36.
36.W. F. Schlotter et al., “The soft x-ray instrument for materials studies at the linac coherent light source x-ray free-electron laser,” Rev. Sci. Instrum. 83, 043107 (2012).
http://dx.doi.org/10.1063/1.3698294
37.
37.S. Schreck et al., “Reabsorption of soft x-ray emission at high x-ray free-electron laser fluences,” Phys. Rev. Lett. 113, 153002 (2014).
http://dx.doi.org/10.1103/PhysRevLett.113.153002
38.
38.J. Nordgren et al., “X-ray spectrometer,” Rev. Sci. Instrum. 60, 1690 (1989).
http://dx.doi.org/10.1063/1.1140929
39.
39.K. Kunnus et al., “A setup for resonant inelastic soft x-ray scattering on liquids at free electron laser light sources,” Rev. Sci. Instrum. 83, 123109 (2012).
http://dx.doi.org/10.1063/1.4772685
40.
40.D. P. DePonte et al., “Gas dynamic virtual nozzle for generation of microscopic droplet streams,” J. Phys. D: Appl. Phys. 41, 195505 (2008).
http://dx.doi.org/10.1088/0022-3727/41/19/195505
41.
41.F. R. S. Rayleigh, “On the instability of jets,” Proc. London Math. Soc. s1-10, 413 (1878).
http://dx.doi.org/10.1112/plms/s1-10.1.4
42.
42.M. Knudsen, “Die maximale verdampfungsgeschwindigkeit des quecksilbers,” Ann. Phys. 352, 697708 (1915).
http://dx.doi.org/10.1002/andp.19153521306
43.
43.J. R. Maa, “Evaporation coefficient of liquids,” Ind. Eng. Chem. Fundam. 6, 504518 (1967).
http://dx.doi.org/10.1021/i160024a005
44.
44.J. D. Smith, C. D. Cappa, W. S. Drisdell, R. C. Cohen, and R. J. Saykally, “Raman thermometry measurements of free evaporation from liquid water droplets,” J. Am. Chem. Soc. 128, 1289212898 (2006).
http://dx.doi.org/10.1021/ja063579v
45.
45.T. Tokushima, Y. Harada, H. Ohashi, Y. Senba, and S. Shin, “High performance slit-less spectrometer for soft x-ray emission spectroscopy,” Rev. Sci. Instrum. 77, 063107 (2006).
http://dx.doi.org/10.1063/1.2204623
46.
46.Y. Harada et al., “Ultrahigh resolution soft x-ray emission spectrometer at BL07LSU in SPring-8,” Rev. Sci. Instrum. 83, 013116 (2012).
http://dx.doi.org/10.1063/1.3680559
47.
47.V. N. Strocov, T. Schmitt, U. Flechsig, L. Patthey, and G. S. Chiuzbăian, “Numerical optimization of spherical variable-line-spacing grating x-ray spectrometers,” J. Synchrotron Radiat. 18, 134142 (2011).
http://dx.doi.org/10.1107/S0909049510054452
48.
48.M. Ogawa et al., “Development of soft x-ray time-resolved photoemission spectroscopy system with a two-dimensional angle-resolved time-of-flight analyzer at SPring-8 BL07LSU,” Rev. Sci. Instrum. 83, 023109 (2012).
http://dx.doi.org/10.1063/1.3687428
49.
49.A. Møgelhøj et al., “Ab initio van der Waals interactions in simulations of water alter structure from mainly tetrahedral to high-density-like,” J. Phys. Chem. B 115, 1414914160 (2011).
http://dx.doi.org/10.1021/jp2040345
50.
50.A. Föhlisch et al., “Ground state interpretation of XES of adsorbates,” Phys. Rev. B 61, 16229 (2000).
http://dx.doi.org/10.1103/physrevb.61.16229
51.
51.A. M. Köster et al., deMon 2k, version 3, deMon Developers, Mexico City, 2011.
52.
52.B. Hammer, L. B. Hansen, and J. K. Nørskov, “Exchange functional rPBE,” Phys. Rev. B 59, 7413 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.7413
53.
53.W. Kutzelnigg, U. Fleischer, and M. Schindler, NMR-Basic Principles and Progress (Springer Verlag, Heidelberg, 1990).
54.
54.G. Igel-Mann, H. Stoll, and H. Preuss, “Pseudopotentials for main group elements (IIIa through VIIa),” Mol. Phys. 65, 13211328 (1988).
http://dx.doi.org/10.1080/00268978800101811
55.
55.E. Gilberg, M. J. Hanus, and B. Foltz, “Investigation of the electronic-structure of ice by high-resolution x-ray spectroscopy,” J. Chem. Phys. 76, 50935097 (1982).
http://dx.doi.org/10.1063/1.442858
56.
56.K. T. Wikfeldt, A. Nilsson, and L. G. M. Pettersson, “Spatially inhomogeneous bimodal inherent structure in simulated liquid water,” Phys. Chem. Chem. Phys. 13, 1991819924 (2011).
http://dx.doi.org/10.1039/c1cp22076d
57.
57.D. Nordlund et al., “The electronic structure of liquid water studied using photoelectron spectroscopy,” Chem. Phys. Lett. 460, 86 (2008).
http://dx.doi.org/10.1016/j.cplett.2008.04.096
58.
58.B. Winter et al., “Full valence band photoemission from liquid water using EUV synchrotron radiation,” J. Phys. Chem. A 108, 2625 (2004).
http://dx.doi.org/10.1021/jp030263q
59.
59.K. Nishizawa, N. Kurahashi, K. Sekiguchi, and T. Mizuno, “High-resolution soft x-ray photoelectron spectroscopy of liquid water,” Phys. Chem. Chem. Phys. 13, 413417 (2011).
http://dx.doi.org/10.1039/c0cp01636e
60.
60.B. Winter, E. F. Aziz, U. Hergenhahn, M. Faubel, and I. V. Hertel, “Hydrogen bonds in liquid water studied by photoelectron spectroscopy,” J. Chem. Phys. 126, 124504 (2007).
http://dx.doi.org/10.1063/1.2710792
61.
61.A. Nilsson et al., “The hydrogen bond in ice probed by soft x-ray spectroscopy and density functional theory,” J. Chem. Phys. 122, 154505 (2005).
http://dx.doi.org/10.1063/1.1879752
62.
62.S. Thürmer et al., “On the nature and origin of dicationic, charge-separated species formed in liquid water on x-ray irradiation,” Nat. Chem. 5, 590596 (2013).
http://dx.doi.org/10.1038/nchem.1680
63.
63.J. A. Sellberg et al., “Comparison of x-ray absorption spectra between water and ice: New ice data with low pre-edge absorption cross-section,” J. Chem. Phys. 141, 034507 (2014).
http://dx.doi.org/10.1063/1.4890035
64.
64.O. Mishima, L. D. Calvert, and E. Whalley, “‘Melting ice’ I at 77 K and 10 kbar: A new method of making amorphous solids,” Nature 310, 393395 (1984).
http://dx.doi.org/10.1038/310393a0
65.
65.E. T. J. Nibbering and T. Elsaesser, “Ultrafast vibrational dynamics of hydrogen bonds in the condensed phase,” Chem. Rev. 104, 18871914 (2004).
http://dx.doi.org/10.1021/cr020694p
66.
66.K. T. Wikfeldt, C. Huang, A. Nilsson, and L. G. M. Pettersson, “Enhanced small-angle scattering connected to the Widom line in simulations of supercooled water,” J. Chem. Phys. 134, 214506 (2011).
http://dx.doi.org/10.1063/1.3594545
67.
67.J. E. Bertie and Z. Lan, “Infrared intensities of liquids XX: The intensity of the OH stretching band of liquid water revisited, and the best current values of the optical constants of H2O(l) at 25∞C between 15 000 and 1 cm−1,” Appl. Spectrosc. 50, 10471057 (1996).
http://dx.doi.org/10.1366/0003702963905385
68.
68.C. J. Fecko, J. D. Eaves, J. J. Loparo, A. Tokmakoff, and P. L. Geissler, “Ultrafast hydrogen-bond dynamics in the infrared spectroscopy of water,” Science 301, 16981702 (2003).
http://dx.doi.org/10.1126/science.1087251
69.
69.A. K. Soper and M. A. Ricci, “Structures of high-density and low-density water,” Phys. Rev. Lett. 84, 28812884 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.2881
70.
70.A. Nilsson et al., “X-ray absorption spectroscopy and x-ray Raman scattering of water; an experimental view,” J. Electron Spectrosc. Relat. Phenom. 177, 99129 (2010).
http://dx.doi.org/10.1016/j.elspec.2010.02.005
71.
71.S. V. Lishchuk, N. P. Malomuzh, and P. V. Makhlaichuk, “Why thermodynamic properties of normal and heavy water are similar to those of argon-like liquids?,” Phys. Lett. A 374, 2084 (2010).
http://dx.doi.org/10.1016/j.physleta.2010.02.070
72.
72.L. B. Skinner et al., “Benchmark oxygen-oxygen pair-distribution function of ambient water from x-ray diffraction measurements with a wide Q-range,” J. Chem. Phys. 138, 074506 (2013).
http://dx.doi.org/10.1063/1.4790861
http://aip.metastore.ingenta.com/content/aip/journal/jcp/142/4/10.1063/1.4905603
Loading
/content/aip/journal/jcp/142/4/10.1063/1.4905603
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/142/4/10.1063/1.4905603
2015-01-28
2016-12-04

Abstract

The structure of bulk liquid water was recently probed by x-ray scattering below the temperature limit of homogeneous nucleation () of ∼232 K [J. A. Sellberg , Nature , 381-384 (2014)]. Here, we utilize a similar approach to study the structure of bulk liquid water below using oxygen K-edge x-ray emission spectroscopy (XES). Based on previous XES experiments [T. Tokushima , Chem. Phys. Lett. , 387-400 (2008)] at higher temperatures, we expected the ratio of the 1b′ and 1b″ peaks associated with the lone-pair orbital in water to change strongly upon deep supercooling as the coordination of the hydrogen (H-) bonds becomes tetrahedral. In contrast, we observed only minor changes in the lone-pair spectral region, challenging an interpretation in terms of two interconverting species. A number of alternative hypotheses to explain the results are put forward and discussed. Although the spectra can be explained by various contributions from these hypotheses, we here emphasize the interpretation that the line shape of each component changes dramatically when approaching lower temperatures, where, in particular, the peak assigned to the proposed disordered component would become more symmetrical as vibrational interference becomes more important.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/142/4/1.4905603.html;jsessionid=ilmPi3xCPAmgC5EgPQlwBIKQ.x-aip-live-03?itemId=/content/aip/journal/jcp/142/4/10.1063/1.4905603&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/142/4/10.1063/1.4905603&pageURL=http://scitation.aip.org/content/aip/journal/jcp/142/4/10.1063/1.4905603'
Right1,Right2,Right3,