Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/142/4/10.1063/1.4905955
1.
1.A. Pimpinelli and J. Villain, Physics of Crystal Growth (Cambridge University Press, 1998).
2.
2.D. P. Woodruff, The Solid-Liquid Interface (Cambridge University Press, 1973).
3.
3.N. Provatas and K. Elder, Phase-Field Methods in Materials Science and Engineering (Wiley-VCH, 2010).
4.
4.J. J. Hoyt, M. Asta, and A. Karma, Interface Sci. 10, 181 (2002).
http://dx.doi.org/10.1023/A:1015828330917
5.
5.J. J. Hoyt and M. Asta, Phys. Rev. B 65, 214106 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.214106
6.
6.R. Kubo, Rep. Prog. Phys. 29, 255 (1966).
http://dx.doi.org/10.1088/0034-4885/29/1/306
7.
7.U. R. Pedersen, F. Hummel, G. Kresse, G. Kahl, and C. Dellago, Phys. Rev. B 88, 094101 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.094101
8.
8.U. R. Pedersen, J. Chem. Phys. 139, 104102 (2013).
http://dx.doi.org/10.1063/1.4818747
9.
9.P. Langevin, C. R. Acad. Sci. (Paris) 146, 530533 (1908).
10.
10.D. Chandler, Introduction to Modern Statistical Mechanics (Oxford University Press, 1987).
11.
11.J. E. Lennard-Jones, Proc. R. Soc. London, Ser. A 106, 463 (1924).
http://dx.doi.org/10.1098/rspa.1924.0082
12.
12.S. J. Plimpton, J. Comput. Phys. 117, 1 (1995).
http://dx.doi.org/10.1006/jcph.1995.1039
13.
13.S. Nosé, J. Chem. Phys. 81, 511 (1984).
http://dx.doi.org/10.1063/1.447334
14.
14.W. G. Hoover, Phys. Rev. A 31, 1695 (1985).
http://dx.doi.org/10.1103/PhysRevA.31.1695
15.
15.M. Parrinello and A. Rahman, J. Appl. Phys. 52, 7182 (1981).
http://dx.doi.org/10.1063/1.328693
16.
16.H. Flyvbjerg and H. G. Petersen, J. Chem. Phys. 91, 461 (1989).
http://dx.doi.org/10.1063/1.457480
17.
17.G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.11169
18.
18.P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.17953
19.
19.H. E. A. Huitema, M. J. Vlot, and J. P. van der Eerden, J. Chem. Phys. 111, 4714 (1999).
http://dx.doi.org/10.1063/1.479233
20.
20.B. B. Laird and A. D. J. Haymet, Chem. Rev. 92, 1819 (1992).
http://dx.doi.org/10.1021/cr00016a007
21.
21.J. R. Morris and X. Song, J. Chem. Phys. 116, 9352 (2002).
http://dx.doi.org/10.1063/1.1474581
22.
22.W. J. Briels and H. L. Tepper, Phys. Rev. Lett. 79, 5074 (1997).
http://dx.doi.org/10.1103/PhysRevLett.79.5074
23.
23.H. L. Tepper and W. J. Briels, J. Chem. Phys. 116, 5186 (2002).
http://dx.doi.org/10.1063/1.1452110
24.
24.J. Monk, Y. Yang, M. I. Mendelev, M. Asta, J. J. Hoyt, and D. Y. Sun, Modell. Simul. Mater. Sci. Eng. 18, 015004 (2010).
http://dx.doi.org/10.1088/0965-0393/18/1/015004
25.
25.A. Karma, Phys. Rev. E 48, 3441 (1993).
http://dx.doi.org/10.1103/PhysRevE.48.3441
26.
26.M. Amini and B. B. Laird, Phys. Rev. Lett. 97, 216102 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.216102
27.
27.J. Benet, L. G. MacDowell, and E. Sanz, J. Chem. Phys. 141, 034701 (2014).
http://dx.doi.org/10.1063/1.4886806
28.
28.J. Q. Broughton, G. H. Gilmer, and K. A. Jackson, Phys. Rev. Lett. 49, 1496 (1982).
http://dx.doi.org/10.1103/PhysRevLett.49.1496
29.
29.D. Y. Sun, M. Asta, and J. J. Hoyt, Phys. Rev. B 69, 024108 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.024108
30.
30.G. Torrie and J. Valleau, J. Comput. Phys. 23, 187 (1997).
http://dx.doi.org/10.1016/0021-9991(77)90121-8
31.
31.D. Frenkel and B. Smit, Understanding Molecular Simulation: From Algorithms to Applications, Computational Science Series Vol. 1, 2nd ed., edited by D. Frenkel, M. Klein, M. Parrinello, and B. Smit (Academic Press, 2002).
32.
32.M. R. Shirts and J. D. Chodera, J. Chem. Phys. 129, 124105 (2008).
http://dx.doi.org/10.1063/1.2978177
33.
33.N. Gnan, T. B. Schrøder, U. R. Pedersen, N. P. Bailey, and J. C. Dyre, J. Chem. Phys. 131, 234504 (2009).
http://dx.doi.org/10.1063/1.3265957
34.
34.T. S. Ingebrigtsen, T. B. Schrøder, and J. C. Dyre, Phys. Rev. X 2, 011011 (2012).
http://dx.doi.org/10.1103/physrevx.2.011011
35.
35.U. R. Pedersen, N. P. Bailey, T. B. Schrøder, and J. C. Dyre, Phys. Rev. Lett. 100, 015701 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.015701
36.
36.N. P. Bailey, U. R. Pedersen, N. Gnan, T. B. Schrøder, and J. C. Dyre, J. Chem. Phys. 129, 184507 (2008).
http://dx.doi.org/10.1063/1.2982247
37.
37.N. P. Bailey, U. R. Pedersen, N. Gnan, T. B. Schrøder, and J. C. Dyre, J. Chem. Phys. 129, 184508 (2008).
http://dx.doi.org/10.1063/1.2982249
38.
38.T. B. Schrøder, N. Gnan, U. R. Pedersen, N. P. Bailey, and J. C. Dyre, J. Chem. Phys. 134, 164505 (2011).
http://dx.doi.org/10.1063/1.3582900
http://aip.metastore.ingenta.com/content/aip/journal/jcp/142/4/10.1063/1.4905955
Loading
/content/aip/journal/jcp/142/4/10.1063/1.4905955
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/142/4/10.1063/1.4905955
2015-01-22
2016-12-06

Abstract

An essential parameter for crystal growth is the kinetic coefficient given by the proportionality between supercooling and average growth velocity. Here, we show that this coefficient can be computed in a single equilibrium simulation using the interface pinning method where two-phase configurations are stabilized by adding a spring-like bias field coupling to an order-parameter that discriminates between the two phases. Crystal growth is a Smoluchowski process and the crystal growth rate can, therefore, be computed from the terminal exponential relaxation of the order parameter. The approach is investigated in detail for the Lennard-Jones model. We find that the kinetic coefficient scales as the inverse square-root of temperature along the high temperature part of the melting line. The practical usability of the method is demonstrated by computing the kinetic coefficient of the elements Na and Si from first principles. A generalized version of the method may be used for computing the rates of crystal nucleation or other rare events.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/142/4/1.4905955.html;jsessionid=ACfsEeGzcuGXRnDn5j6w1t7g.x-aip-live-06?itemId=/content/aip/journal/jcp/142/4/10.1063/1.4905955&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/142/4/10.1063/1.4905955&pageURL=http://scitation.aip.org/content/aip/journal/jcp/142/4/10.1063/1.4905955'
Right1,Right2,Right3,