Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/142/4/10.1063/1.4906320
1.
1.C. Kerr, in Thermodynamics of Aqueous Systems with Industrial Applications, edited by S. A. Newman, H. E. Barner, M. Klein, and S. I. Sandler (American Chemical Society, 1980), Chap. 5, pp. 91106.
2.
2.C. Rowland, A. H. Abdulsatta, and D. Burbank, in Thermodynamics of Aqueous Systems with Industrial Applications, edited by S. A. Newman, H. E. Barner, M. Klein, and S. I. Sandler (American Chemical Society, 1980), Chap. 11, pp. 247267.
3.
3.A. Anderko, P. Wang, and M. Rafal, Fluid Phase Equilib. 194-197, 123 (2002).
http://dx.doi.org/10.1016/S0378-3812(01)00645-8
4.
4.D. C. Rau, B. Lee, and V. A. Parsegian, Proc. Natl. Acad. Sci. U. S. A. 81, 2621 (1984).
http://dx.doi.org/10.1073/pnas.81.9.2621
5.
5.D. Leckband and J. Israelachvili, Q. Rev. Biophys. 34, 105 (2001).
http://dx.doi.org/10.1017/S0033583501003687
6.
6.P. Mills, C. F. Anderson, and M. T. Record, J. Phys. Chem. 89, 3984 (1985).
http://dx.doi.org/10.1021/j100265a012
7.
7.S. Leikin, V. A. Parsegian, D. C. Rau, and R. P. Rand, Ann. Rev. Phys. Chem. 44, 369 (1993).
http://dx.doi.org/10.1146/annurev.pc.44.100193.002101
8.
8.G. S. Manning, Q. Rev. Biophys. 11, 179 (1978).
http://dx.doi.org/10.1017/S0033583500002031
9.
9.D. Klein, P. Moore, and T. Steitz, J. Mol. Biol. 340, 141 (2004).
http://dx.doi.org/10.1016/j.jmb.2004.03.076
10.
10.C. Palliser and R. McKibbin, Transp. Porous Media 33, 155 (1998).
http://dx.doi.org/10.1023/A:1006549810989
11.
11.D. M. Sherman and M. D. Collings, Geochem. Trans. 3, 102 (2002).
http://dx.doi.org/10.1186/1467-4866-3-102
12.
12.P. Debye and E. Hückel, Phys. Z. 24, 185 (1923).
13.
13.W. Hamer and Y. Wu, J. Phys. Chem. Ref. Data 1, 1047 (1972).
http://dx.doi.org/10.1063/1.3253108
14.
14.K. S. Pitzer, J. Phys. Chem 77, 268 (1973).
http://dx.doi.org/10.1021/j100621a026
15.
15.K. S. Pitzer and G. Mayorga, J. Chem. Phys. 77, 2300 (1973).
http://dx.doi.org/10.1021/j100638a009
16.
16.K. Pitzer and G. Mayorga, J. Solution Chem. 3, 539 (1974).
http://dx.doi.org/10.1007/BF00648138
17.
17.K. S. Pitzer and J. J. Kim, J. Am. Chem. Soc. 96, 5701 (1974).
http://dx.doi.org/10.1021/ja00825a004
18.
18.P. J. Lenart, A. Jusufi, and A. Z. Panagiotopoulos, J. Chem. Phys. 126, 044509 (2007).
http://dx.doi.org/10.1063/1.2431169
19.
19.M. L. Huggins and J. E. Mayer, J.Chem. Phys. 1, 643 (1933).
http://dx.doi.org/10.1063/1.1749344
20.
20.B. M. Pettitt and P. J. Rossky, J. Chem. Phys. 84, 5836 (1986).
http://dx.doi.org/10.1063/1.449894
21.
21.F. Fumi and M. Tosi, J. Phys. Chem. Solids 25, 31 (1964).
http://dx.doi.org/10.1016/0022-3697(64)90159-3
22.
22.M. Tosi and F. Fumi, J. Phys. Chem. Solids 25, 45 (1964).
http://dx.doi.org/10.1016/0022-3697(64)90160-X
23.
23.S. Gavryushov and P. Linse, J. Phys. Chem. B 110, 10878 (2006).
http://dx.doi.org/10.1021/jp056871i
24.
24.H. J. C. Berendsen, J. R. Grigera, and T. P. Straatsma, J. Phys. Chem. 91, 6269 (1987).
http://dx.doi.org/10.1021/j100308a038
25.
25.M. Ferrario, G. Ciccotti, E. Spohr, T. Cartailler, and P. Turq, J. Chem. Phys. 117, 4947 (2002).
http://dx.doi.org/10.1063/1.1498820
26.
26.D. Frenkel and A. J. C. Ladd, J. Chem. Phys. 81, 3188 (1984).
http://dx.doi.org/10.1063/1.448024
27.
27.D. E. Smith and L. X. Dang, J. Chem. Phys. 100, 3757 (1994).
http://dx.doi.org/10.1063/1.466363
28.
28.J. E. Mayer, J. Chem. Phys. 1, 270 (1933).
http://dx.doi.org/10.1063/1.1749283
29.
29.E. Sanz and C. Vega, J. Chem. Phys. 126, 014507 (2007).
http://dx.doi.org/10.1063/1.2397683
30.
30.A. S. Paluch, S. Jayaraman, J. K. Shah, and E. J. Maginn, J. Chem. Phys. 133, 124504 (2010).
http://dx.doi.org/10.1063/1.3478539
31.
31.A. S. Paluch, S. Jayaraman, J. K. Shah, and E. J. Maginn, J. Chem. Phys. 137, 039901 (2012).
http://dx.doi.org/10.1063/1.4738193
32.
32.J. Aragones, E. Sanz, and C. Vega, J. Chem. Phys. 136, 244508 (2012).
http://dx.doi.org/10.1063/1.4728163
33.
33.I. S. Joung and T. E. Cheatham, J. Phys. Chem. B 112, 9020 (2008).
http://dx.doi.org/10.1021/jp8001614
34.
34.K. Kobayashi, Y. Liang, T. Sakka, and T. Matsuoka, J. Chem. Phys. 140, 144705 (2014).
http://dx.doi.org/10.1063/1.4870417
35.
35.M. Lísal, W. R. Smith, and J. Kolafa, J. Phys. Chem. B 109, 12956 (2005).
http://dx.doi.org/10.1021/jp0507492
36.
36.F. Moučka, M. Lísal, J. Škvor, J. Jirsák, I. Nezbeda, and W. R. Smith, J. Phys. Chem. B 115, 7849 (2011).
http://dx.doi.org/10.1021/jp202054d
37.
37.F. Moučka, M. Lísal, and W. R. Smith, J. Phys. Chem. B 116, 5468 (2012).
http://dx.doi.org/10.1021/jp301447z
38.
38.H. W. Horn, W. C. Swope, J. W. Pitera, J. D. Madura, T. J. Dick, G. L. Hura, and T. Head-Gordon, J. Chem. Phys. 120, 9665 (2004).
http://dx.doi.org/10.1063/1.1683075
39.
39.F. Moučka, I. Nezbeda, and W. R. Smith, J. Chem. Phys. 138, 154102 (2013).
http://dx.doi.org/10.1063/1.4801322
40.
40.I. S. Joung and T. E. Cheatham, J Phys. Chem. B 113, 13279 (2009).
http://dx.doi.org/10.1021/jp902584c
41.
41.W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein, J. Chem. Phys. 79, 926 (1983).
http://dx.doi.org/10.1063/1.445869
42.
42.F. Moučka, I. Nezbeda, and W. R. Smith, J. Chem. Phys. 139, 124505 (2013).
http://dx.doi.org/10.1063/1.4821153
43.
43.C. H. Bennett, J. Comput. Phys. 22, 245 (1976).
http://dx.doi.org/10.1016/0021-9991(76)90078-4
44.
44.M. R. Shirts, E. Bair, G. Hooker, and V. S. Pande, Phys. Rev. Lett. 91, 140601 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.140601
45.
45.M. R. Shirts and V. S. Pande, J. Chem. Phys. 122, 144107 (2005).
http://dx.doi.org/10.1063/1.1873592
46.
46.H. Paliwal and M. Shirts, J. Chem. Theory Comput. 7, 4115 (2011).
http://dx.doi.org/10.1021/ct2003995
47.
47.K. B. Daly, J. B. Benziger, P. G. Debenedetti, and A. Z. Panagiotopoulos, Comput. Phys. Commun. 183, 2054 (2012).
http://dx.doi.org/10.1016/j.cpc.2012.05.006
48.
48.M. R. Shirts and J. D. Chodera, J. Chem. Phys. 129, 124105 (2008).
http://dx.doi.org/10.1063/1.2978177
49.
49.J. R. Errington and A. Z. Panagiotopoulos, J. Phys. Chem. B 102, 7470 (1998).
http://dx.doi.org/10.1021/jp982068v
50.
50.See supplementary material at http://dx.doi.org/10.1063/1.4906320 for tables of parameters for the models used, numerical values of activity coefficients, chemical potentials, volumes, and solubilities and a derivation of Eqs. (20)(22).[Supplementary Material]
51.
51.J. M. Chase, NIST-JANAF Thermochemical Tables; Journal of Physical and Chemical Reference Data Monograph No. 9 (American Chemical Society, American Institute of Physics, 1998).
52.
52.J. D. Chodera, W. C. Swope, J. W. Pitera, C. Seok, and K. A. Dill, J. Chem. Theory Comput. 3, 26 (2007).
http://dx.doi.org/10.1021/ct0502864
53.
53.B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl, J. Chem. Theory Comput. 4, 435 (2008).
http://dx.doi.org/10.1021/ct700301q
54.
54.S. Nosé, Mol. Phys. 52, 255 (1984).
http://dx.doi.org/10.1080/00268978400101201
55.
55.W. G. Hoover, Phys. Rev. A 31, 1695 (1985).
http://dx.doi.org/10.1103/PhysRevA.31.1695
56.
56.G. J. Martyna, M. E. Tuckerman, D. J. Tobias, and M. L. Klein, Mol. Phys. 87, 1117 (1996).
http://dx.doi.org/10.1080/00268979600100761
57.
57.T. Darden, D. York, and L. Pedersen, J. Chem. Phys. 98, 10089 (1993).
http://dx.doi.org/10.1063/1.464397
58.
58.U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, and L. G. Pedersen, J. Chem. Phys. 103, 8577 (1995).
http://dx.doi.org/10.1063/1.470117
59.
59.J.-P. Ryckaert, G. Ciccotti, and H. J. C. Berendsen, J. Comput. Phys. 23, 327 (1977).
http://dx.doi.org/10.1016/0021-9991(77)90098-5
60.
60.S. Miyamoto and P. A. Kollman, J. Comput. Chem. 13, 952 (1992).
http://dx.doi.org/10.1002/jcc.540130805
61.
61.E. Bradley, Ann. Stat. 7, 1 (1979).
http://dx.doi.org/10.1214/aos/1176344552
62.
62.P. S. Z. Rogers and K. S. Pitzer, J. Phys. Chem. Ref. Data 11, 15 (1982).
http://dx.doi.org/10.1063/1.555660
63.
63.O. Gereben and L. Pusztai, Chem. Phys. Lett. 507, 80 (2011).
http://dx.doi.org/10.1016/j.cplett.2011.02.064
64.
64.H. Uchida and M. Matsuoka, Fluid Phase Equilib. 219, 49 (2004).
http://dx.doi.org/10.1016/j.fluid.2004.01.013
65.
65.F. Moučka, I. Nezbeda, and W. R. Smith, J. Chem. Theory Comput. 9, 5076 (2013).
http://dx.doi.org/10.1021/ct4006008
66.
66.G. Lamoureux, A. D. MacKerell, Jr., and B. Roux, J. Chem. Phys. 119, 5185 (2003).
http://dx.doi.org/10.1063/1.1598191
67.
67.P. T. Kiss and A. Baranyai, J. Chem. Phys. 138, 204507 (2013).
http://dx.doi.org/10.1063/1.4807600
68.
68.P. T. Kiss and A. Baranyai, J. Chem. Phys. 141, 114501 (2014).
http://dx.doi.org/10.1063/1.4895129
69.
69.F. Moučka, I. Nezbeda, and W. R. Smith, Mol. Simul. 39, 1125 (2013).
http://dx.doi.org/10.1080/08927022.2013.804183
http://aip.metastore.ingenta.com/content/aip/journal/jcp/142/4/10.1063/1.4906320
Loading
/content/aip/journal/jcp/142/4/10.1063/1.4906320
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/142/4/10.1063/1.4906320
2015-01-28
2016-10-01

Abstract

The mean ionic activity coefficients of aqueous NaCl solutions of varying concentrations at 298.15 K and 1 bar have been obtained from molecular dynamics simulations by gradually turning on the interactions of an ion pair inserted into the solution. Several common non-polarizable water and ion models have been used in the simulations. Gibbs-Duhem equation calculations of the thermodynamic activity of water are used to confirm the thermodynamic consistency of the mean ionic activity coefficients. While the majority of model combinations predict the correct trends in mean ionic activity coefficients, they overestimate their values at high salt concentrations. The solubility predictions also suffer from inaccuracies, with all models underpredicting the experimental values, some by large factors. These results point to the need for further ion and water model development.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/142/4/1.4906320.html;jsessionid=KU9pDdSZnWlP-q9P5E-ZhSPt.x-aip-live-06?itemId=/content/aip/journal/jcp/142/4/10.1063/1.4906320&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/142/4/10.1063/1.4906320&pageURL=http://scitation.aip.org/content/aip/journal/jcp/142/4/10.1063/1.4906320'
Right1,Right2,Right3,