Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/142/5/10.1063/1.4906149
1.
1.Structure and Dynamics of Membranes, Handbook of Biological Physics Vol. 1, edited by R. Lipowsky and E. Sackmann (Elsevier, Amsterdam, 1995).
2.
2.V. Kiessling, C. Wan, and L. K. Tamm, “Domain coupling in asymmetric lipid bilayers,” Biochim. Biophys. Acta 1788, 6471 (2009).
http://dx.doi.org/10.1016/j.bbamem.2008.09.003
3.
3.W. L. Hwang, M. Chen, B. Cronin, M. Holden, and H. Bayley, “Asymmetric droplet interface bilayers,” J. Am. Chem. Soc. 130, 58785879 (2008).
http://dx.doi.org/10.1021/ja802089s
4.
4.S. Chiantia, P. Schwille, A. S. Klymchenko, and E. London, “Asymmetric GUVs prepared by MbCD-mediated lipid exchange: An FCS study,” Biophys. J. 100, L01L03 (2011).
http://dx.doi.org/10.1016/j.bpj.2010.11.051
5.
5.R. Lipowsky and H. G. Döbereiner, “Vesicles in contact with nanoparticles and colloids,” Europhys. Lett. 43, 219225 (1998).
http://dx.doi.org/10.1209/epl/i1998-00343-4
6.
6.R. Lipowsky, “Spontaneous tubulation of membranes and vesicles reveals membrane tension generated by spontaneous curvature,” Faraday Discuss. 161, 305331 (2013).
http://dx.doi.org/10.1039/c2fd20105d
7.
7.K. Takei, V. I. Slepnev, V. Haucke, and P. D. Camilli, “Functional partnership between amphiphysin and dynamin in clathrin-mediated endocytosis,” Nat. Cell Biol. 1, 3339 (1999).
http://dx.doi.org/10.1038/9004
8.
8.B. J. Peter, H. M. Kent, I. G. Mills, Y. Vallis, P. J. G. Butler, P. R. Evans, and H. T. McMahon, “BAR domains as sensors of membrane curvature: The amphiphysin BAR structure,” Science 303, 495499 (2004).
http://dx.doi.org/10.1126/science.1092586
9.
9.K. Farsad, N. Ringstad, K. Takei, S. R. Floyd, K. Rose, and P. D. Camilli, “Generation of high curvature membranes mediated by direct endophilin bilayer interactions,” J. Cell Biol. 155, 193200 (2001).
http://dx.doi.org/10.1083/jcb.200107075
10.
10.Q. Wang, V. A. S. Navarro, G. Peng, E. Molinelli, S. L. Goh, B. L. Judson, K. R. Rajashankar, and H. Sondermann, “Molecular mechnism of membrane constriction and tubulation mediated by the F-BAR protein Pacsin/Syndapin,” Proc. Natl. Acad. Sci. U. S. A. 106, 1270012705 (2009).
http://dx.doi.org/10.1073/pnas.0902974106
11.
11.M. G. J. Ford, I. G. Mills, B. J. Peter, Y. Vallis, G. J. K. Praefcke, P. R. Evans, and H. T. McMahon, “Curvature of clathrin-coated pits driven by epsin,” Nature 419, 361366 (2002).
http://dx.doi.org/10.1038/nature01020
12.
12.Y. A. Domanov and P. K. J. Kinnunen, “Antimicrobial peptides temporins B and L induce formation of tubular lipid protrusions from supported phospholipid bilayers,” Biophys. J. 91, 44274439 (2006).
http://dx.doi.org/10.1529/biophysj.106.091702
13.
13.M. Mally, J. Majhenc, S. Svetina, and B. Zeks, “The response of giant phospholipid vesicles to pore-forming peptide melittin,” Biochim. Biophys. Acta 1768, 11791189 (2007).
http://dx.doi.org/10.1016/j.bbamem.2007.02.015
14.
14.T. M. Domingues, K. A. Riske, and A. Miranda, “Revealing the lytic mechanism of the antimicrobial peptide gomesin by observing giant unilamellar vesicles,” Langmuir 26, 1107711084 (2010).
http://dx.doi.org/10.1021/la100662a
15.
15.A. Arouni, V. Kiessling, L. Tamm, M. Dathe, and A. Blume, “Morphological changes induced by the action of antimicrobial peptides on supported lipid bilayers,” J. Phys. Chem. 115, 158167 (2011).
http://dx.doi.org/10.1021/jp107577k
16.
16.Y. Li, R. Lipowsky, and R. Dimova, “Membrane nanotubes induced by aqueous phase separation and stabilized by spontaneous curvature,” Proc. Natl. Acad. Sci. U. S. A. 108, 47314736 (2011).
http://dx.doi.org/10.1073/pnas.1015892108
17.
17.W. D. Bancroft, “The theory of emulsification, V,” J. Phys. Chem. 17, 501519 (1913).
http://dx.doi.org/10.1021/j150141a002
18.
18.W. Bancroft and C. Tucker, “Gibbs on emulsification,” J. Phys. Chem. 31, 16811692 (1927).
http://dx.doi.org/10.1021/j150281a007
19.
19.F. C. Frank, “Liquid crystals I: On the theory of liquid crystals,” Discuss. Faraday Soc. 25, 1928 (1958).
http://dx.doi.org/10.1039/df9582500019
20.
20.W. Helfrich, “Elastic properties of lipid bilayers: Theory and possible experiments,” Z. Naturforsch. 28c, 693703 (1973).
21.
21.R. Goetz and R. Lipowsky, “Computer simulations of bilayer membranes: Self-assembly and interfacial tension,” J. Chem. Phys. 108, 73977409 (1998).
http://dx.doi.org/10.1063/1.476160
22.
22.J. C. Shillcock and R. Lipowsky, “Equilibrium structure and lateral stress distribution of amphiphilic bilayers from dissipative particle dynamics simulations,” J. Chem. Phys. 117, 50485061 (2002).
http://dx.doi.org/10.1063/1.1498463
23.
23.G. Ayton and G. A. Voth, “Bridging microscopic and mesoscopic simulations of lipid bilayers,” Biophys. J. 83, 33573370 (2002).
http://dx.doi.org/10.1016/S0006-3495(02)75336-8
24.
24.G. Srinivas, D. E. Discher, and M. L. Klein, “Self-assembly and properties of diblock copolymers by coarse-grain molecular dynamics,” Nat. Mater. 3, 638644 (2004).
http://dx.doi.org/10.1038/nmat1185
25.
25.R. Goetz, G. Gompper, and R. Lipowsky, “Mobilitiy and elasticity of self-assembled membranes,” Phys. Rev. Lett. 82, 221224 (1999).
http://dx.doi.org/10.1103/PhysRevLett.82.221
26.
26.E. G. Brandt, A. R. Braun, J. N. Sachs, J. F. Nagle, and O. Edholm, “Interpretation of fluctuation spectra in lipid bilayer simulations,” Biophys. J. 100, 21042111 (2011).
http://dx.doi.org/10.1016/j.bpj.2011.03.010
27.
27.M. C. Watson, E. S. Penev, P. M. Welch, and F. L. H. Brown, “Thermal fluctuations in shape, thickness, and molecular orientation in lipid bilayers,” J. Chem. Phys. 135, 244701 (2011).
http://dx.doi.org/10.1063/1.3660673
28.
28.P. Tarazona, E. Chacon, and F. Bresme, “Thermal fluctuations and bending rigidity of bilayer membranes,” J. Chem. Phys. 139, 094902 (2013).
http://dx.doi.org/10.1063/1.4818421
29.
29.M. Orsi, D. Y. Haubertin, W. E. Sanderson, and J. W. Essex, “A quantitative coarse-grain model for lipid bilayers,” J. Phys. Chem. B 112, 802815 (2008).
http://dx.doi.org/10.1021/jp076139e
30.
30.M. Hu, J. J. Briguglio, and M. Deserno, “Determining the Gaussian curvature modulus of lipid membranes in simulations,” Biophys. J. 102, 14031410 (2012).
http://dx.doi.org/10.1016/j.bpj.2012.02.013
31.
31.W. Helfrich, “Amphiphilic mesophases made of defects,” in Physics of Defects, edited by R. Balian et al. (North-Holland Publishing Company, Amsterdam, 1981), pp. 715755.
32.
32.I. Szleifer, D. Kramer, A. Ben-Shaul, W. M. Gelbart, and S. A. Safran, “Molecular theory of curvature elasticity in surfactant films,” J. Chem. Phys. 92, 68006817 (1990).
http://dx.doi.org/10.1063/1.458267
33.
33.G. Gompper and S. Klein, “Ginzburg–Landau theory of aqueous surfactant solutions,” J. Phys. II France 2, 17251744 (1992).
http://dx.doi.org/10.1051/jp2:1992230
34.
34.A. Grafmüller, J. C. Shillcock, and R. Lipowsky, “The fusion of membranes and vesicles-pathway and energy barriers form dissipative particle dynamics,” Biophys. J. 96, 26582675 (2009).
http://dx.doi.org/10.1016/j.bpj.2008.11.073
35.
35.R. Lipowsky, “Coupling of bending and stretching deformations in vesicle membranes,” Adv. Colloid Interface Sci. 208, 1424 (2014).
http://dx.doi.org/10.1016/j.cis.2014.02.008
36.
36.R. Groot and P. Warren, “Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation,” J. Chem. Phys. 107, 44234435 (1997).
http://dx.doi.org/10.1063/1.474784
37.
37.L. Gao, J. Shillcock, and R. Lipowsky, “Improved dissipative particle dynamics simulations of lipid bilayers,” J. Chem. Phys. 126, 015101 (2007).
http://dx.doi.org/10.1063/1.2424698
38.
38.J. Rowlinson and B. Widom, Molecular Theory of Capillarity (Clarendon Press, Oxford, 1989).
39.
39.D. Marsh, CRC Handbook of Lipid Bilayers (CRC Press, Boca Raton, 1990).
40.
40.A. Imparato, J. Shillcock, and R. Lipowsky, “Shape fluctuations and elastic properties of two-component bilayer membranes,” Europhys. Lett. 69, 650656 (2004).
http://dx.doi.org/10.1209/epl/i2004-10382-3
41.
41.A. Imparato, “Surface tension in bilayer membranes with fixed projected area,” J. Chem. Phys. 124, 154714 (2006).
http://dx.doi.org/10.1063/1.2189847
42.
42.J. Stecki, “Size dependence, stability, and the transition to buckling in model reverse bilayers,” J. Chem. Phys. 125, 154902 (2006).
http://dx.doi.org/10.1063/1.2357943
43.
43.J. Neder, B. West, P. Nielaba, and F. Schmid, “Coarse-grained simulations of membranes under tension,” J. Chem. Phys. 132, 115101 (2010).
http://dx.doi.org/10.1063/1.3352583
44.
44.O. Farago, “Mechanical surface tension governs membrane thermal fluctuations,” Phys. Rev. E 84, 051914 (2011).
http://dx.doi.org/10.1103/PhysRevE.84.051914
45.
45.R. Lipowsky and S. Grotehans, “Renormalization of hydration forces by collective protrusion modes,” Biophys. Chem. 49, 2737 (1993).
http://dx.doi.org/10.1016/0301-4622(93)E0079-K
46.
46.G. Brannigan and F. L. H. Brown, “A consistent model for thermal fluctuations and protein-induced deformations in lipid bilayers,” Biophys. J. 90, 15011520 (2006).
http://dx.doi.org/10.1529/biophysj.105.075838
47.
47.L. D. Landau and E. M. Lifshitz, Theory of Elasticity (Pergamon Press, New York, 1986).
48.
48.U. Seifert, K. Berndl, and R. Lipowsky, “Shape transformations of vesicles: Phase diagram for spontaneous curvature and bilayer coupling model,” Phys. Rev. A 44, 11821202 (1991).
http://dx.doi.org/10.1103/PhysRevA.44.1182
49.
49.J. B. Fournier, “On the stress and torque tensors in fluid membranes,” Soft Matter 3, 883888 (2007).
http://dx.doi.org/10.1039/b701952a
50.
50.See supplementary material at http://dx.doi.org/10.1063/1.4906149 for the three figures, S1–S3.[Supplementary Material]
51.
51.R. Lipowsky, “Domains and rafts in membranes-hidden dimensions of selforganization,” J. Biol. Phys. 28, 195210 (2002).
http://dx.doi.org/10.1023/A:1019994628793
52.
52.R. Lipowsky, “Remodelling of membrane compartments: Some consequences of membrane fluidity,” Biol. Chem. 395, 253274 (2014).
http://dx.doi.org/10.1515/hsz-2013-0244
53.
53.J. Agudo-Canalejo and R. Lipowsky, “Two critical particle sizes for the engulfment of nanoparticles by biomembranes and vesicles” (unpublished).
54.
54.J. Shillcock and R. Lipowsky, “Visualizing soft matter: Mesoscopic simulations of membranes, vesicles, and nanoparticles,” Biophys. Rev. Lett. 2, 3355 (2007).
http://dx.doi.org/10.1142/S1793048007000428
55.
55.T. Yue and X. Zhang, “Molecular understanding of receptor-mediated membrane responses to ligand-coated nanoparticles,” Soft Matter 7, 91049112 (2011).
http://dx.doi.org/10.1039/c1sm05398a
56.
56.T. Yue and X. Zhang, “Cooperative effect in recepctor-mediated endocytosis of multiple nanoparticles,” ACS Nano 6, 31963205 (2012).
http://dx.doi.org/10.1021/nn205125e
57.
57.H. Ding and Y. Ma, “Interactions between Janus particles and membranes,” Nanoscale 4, 11161122 (2012).
http://dx.doi.org/10.1039/c1nr11425e
58.
58.I. Salib, X. Yong, E. J. Crabb, N. M. Moellers, G. T. McFarlin IV, O. Kuksenok, and A. C. Balazs, “Harnessing fluid-driven vesicles to pick up and drop off Janus particles,” ACS Nano 7, 12241238 (2013).
http://dx.doi.org/10.1021/nn304622f
59.
59.R. Dimova and R. Lipowsky, “Lipid membranes in contact with aqueous phases of polymer solutions,” Soft Matter 8, 64096415 (2012).
http://dx.doi.org/10.1039/c2sm25261a
http://aip.metastore.ingenta.com/content/aip/journal/jcp/142/5/10.1063/1.4906149
Loading
/content/aip/journal/jcp/142/5/10.1063/1.4906149
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/142/5/10.1063/1.4906149
2015-02-02
2016-12-06

Abstract

Biomimetic and biological membranes consist of molecular bilayers with two leaflets which are typically exposed to different aqueous environments and may differ in their molecular density or composition. Because of these asymmetries, the membranes prefer to curve in a certain manner as quantitatively described by their spontaneous curvature. Here, we study such asymmetric membranes via coarse-grained molecular dynamics simulations. We consider two mechanisms for the generation of spontaneous curvature: (i) different lipid densities within the two leaflets and (ii) leaflets exposed to different concentrations of adsorbing particles. We focus on membranes that experience no mechanical tension and describe two methods to compute the spontaneous curvature. The first method is based on the detailed structure of the bilayer’s stress profile which can hardly be measured experimentally. The other method starts from the intuitive view that the bilayer represents a thin fluid film bounded by two interfaces and reduces the complexity of the stress profile to a few membrane parameters that can be measured experimentally. For the case of asymmetric adsorption, we introduce a simulation protocol based on two bilayers separated by two aqueous compartments with different adsorbate concentrations. The adsorption of small particles with a size below 1 nm is shown to generate large spontaneous curvatures up to about 1/(24 nm). Our computational approach is quite general: it can be applied to any molecular model of bilayer membranes and can be extended to other mechanisms for the generation of spontaneous curvatures as provided, e.g., by asymmetric lipid composition or depletion layers of solute molecules.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/142/5/1.4906149.html;jsessionid=books76P9usyUYVtaMUxAnNL.x-aip-live-02?itemId=/content/aip/journal/jcp/142/5/10.1063/1.4906149&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/142/5/10.1063/1.4906149&pageURL=http://scitation.aip.org/content/aip/journal/jcp/142/5/10.1063/1.4906149'
Right1,Right2,Right3,