Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/142/5/10.1063/1.4906557
1.
1.M. V. Berry, Proc. R. Soc. London, Ser. A 392, 45 (1984).
http://dx.doi.org/10.1098/rspa.1984.0023
2.
2.J. Samuel and R. Bhandari, Phys. Rev. Lett. 60, 2339 (1988).
http://dx.doi.org/10.1103/PhysRevLett.60.2339
3.
3.D. J. Thouless, Phys. Rev. B 27, 6083 (1983).
http://dx.doi.org/10.1103/PhysRevB.27.6083
4.
4.N. A. Sinitsyn and I. Nemenman, Europhys. Lett. 77, 58001 (2007).
http://dx.doi.org/10.1209/0295-5075/77/58001
5.
5.N. A. Sinitsyn and I. Nemenman, Phys. Rev. Lett. 99, 220408 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.220408
6.
6.J. Ohkubo, J. Chem. Phys. 129, 205102 (2008).
http://dx.doi.org/10.1063/1.3026510
7.
7. V. Y. Chernyak, J. R. Klein, and N. A. Sinitsyn, J. Chem. Phys. 136, 154107 (2012);
http://dx.doi.org/10.1063/1.3703328
7. V. Y. Chernyak, J. R. Klein, and N. A. Sinitsyn, J. Chem. Phys. 136, 154108 (2012).
http://dx.doi.org/10.1063/1.3703329
8.
8.T. Sagawa and H. Hayakawa, Phys. Rev. E 84, 051110 (2011).
http://dx.doi.org/10.1103/PhysRevE.84.051110
9.
9.J. Ren, P. Hänggi, and B. Li, Phys. Rev. Lett. 104, 170601 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.170601
10.
10.T. Yuge, T. Sagawa, A. Sugita, and H. Hayakawa, Phys. Rev. B 86, 235308 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.235308
11.
11.K. L. Watanabe and H. Hayakawa, Prog. Theor. Exp. Phys. 2014, 113A01.
http://dx.doi.org/10.1093/ptep/ptu149
12.
12.M. Doi and S. F. Edwards, The Theory of Polymer Dynamics (Oxford University Press, Oxford, 1988).
13.
13.P. G. de Gennes and J. Prost, The Physics of Liquid Crystals, 2nd ed. (Clarendon Press, Oxford, 1993).
14.
14.N. Nemoto, J. L. Schrag, J. D. Ferry, and R. W. Fulton, Biopolymers 14, 409 (1975).
http://dx.doi.org/10.1002/bip.1975.360140213
15.
15.N. Ookubo, M. Komatsubara, H. Nakajima, and Y. Wada, Biopolymers 15, 929 (1976).
http://dx.doi.org/10.1002/bip.1976.360150509
16.
16.M. Harasim, B. Wunderlich, O. Peleg, M. Kröger, and A. R. Bausch, Phys. Rev. Lett. 110, 108302 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.108302
17.
17.J. M. J. van Leeuwen and H. W. J. Blöte, “Tumbling of a rigid rod in a shear flow,” e-print arXiv:1406.1317.
18.
18.E. J. Hinch and L. G. Leal, Fluid Mech. 52, 683 (1972).
http://dx.doi.org/10.1017/S002211207200271X
19.
19.E. J. Hinch and L. G. Leal, Fluid Mech. 76, 187 (1976).
http://dx.doi.org/10.1017/S0022112076003200
20.
20.W. E. Stewart and J. P. Sorensen, Trans. Soc. Rheol. 16, 1 (1972).
http://dx.doi.org/10.1122/1.549275
21.
21.N. A. Sinitsyn, J. Phys. A: Math. Theor. 42, 193001 (2009).
http://dx.doi.org/10.1088/1751-8113/42/19/193001
22.
22.J. Ohkubo, IEICE Trans. Commun. E96-B, 2733 (2013).
http://dx.doi.org/10.1587/transcom.E96.B.2733
23.
23.I. M. Jánosi, T. Tél, D. E. Wolf, and J. A. C. Gallas, Phys. Rev. E 56, 2858 (1997).
http://dx.doi.org/10.1103/PhysRevE.56.2858
24.
24.D. J. Pine, J. P. Gollub, J. F. Brady, and A. M. Leshansky, Nature 438, 997-1000 (2005).
http://dx.doi.org/10.1038/nature04380
25.
25.A. Messiah, Quantum Mechanics (Dover Publications, New York, 2014).
http://aip.metastore.ingenta.com/content/aip/journal/jcp/142/5/10.1063/1.4906557
Loading
/content/aip/journal/jcp/142/5/10.1063/1.4906557
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/142/5/10.1063/1.4906557
2015-02-04
2016-12-09

Abstract

We investigate nonlinear rheology of dilute liquid crystalline polymer solutions under time dependent two-directional shear flow. We analyze the Smoluchowski equation, which describes the dynamics of the orientation of a liquid crystalline polymer, by employing technique of the full counting statistics. In the adiabatic limit, we derive the expression for time integrated currents generated by a Berry-like curvature. Using this expression, it is shown that the expectation values of the time-integrated angular velocity of a liquid crystalline polymer and the time-integrated stress tensor are generally not zero even if the time average of the shear rate is zero. The validity of the theoretical calculations is confirmed by direct numerical simulations of the Smoluchowski equation. Nonadiabatic effects are also investigated by means of simulations and it is found that the time-integrated stress tensor depends on the speed of the modulation of the shear rate if we adopt the isotropic distribution as an initial state.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/142/5/1.4906557.html;jsessionid=to3KQdwh3GPuF9YU4LvF_L0H.x-aip-live-03?itemId=/content/aip/journal/jcp/142/5/10.1063/1.4906557&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/142/5/10.1063/1.4906557&pageURL=http://scitation.aip.org/content/aip/journal/jcp/142/5/10.1063/1.4906557'
Right1,Right2,Right3,