Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/142/5/10.1063/1.4906745
1.
1.G. Ottonello and P. Richet, J. Chem. Phys. 140, 044506 (2014).
http://dx.doi.org/10.1063/1.4862737
2.
2.R. H. Fowler and E. A. Guggenheim, Statistical Thermodynamics (Cambridge University Press, Cambridge, 1939).
3.
3.R. A. Pierotti, J. Phys. Chem. 67, 1840 (1963).
http://dx.doi.org/10.1021/j100803a024
4.
4.H. Reiss, Adv. Chem. Phys. 9, 1 (1965).
http://dx.doi.org/10.1002/9780470143551.ch1
5.
5.H. Reiss and S. W. Mayer, J. Chem. Phys. 34, 2001 (1961).
http://dx.doi.org/10.1063/1.1731809
6.
6.H. Reiss, H. L. Frisch, and J. L. Lebowitz, J. Chem. Phys. 31, 369 (1959).
http://dx.doi.org/10.1063/1.1730361
7.
7.H. Reiss, H. L. Frisch, E. Helfand, and J. L. Lebowitz, J. Chem. Phys. 32, 119 (1960).
http://dx.doi.org/10.1063/1.1700883
8.
8.R. A. Pierotti, J. Phys. Chem. 69, 281 (1965).
http://dx.doi.org/10.1021/j100885a043
9.
9.R. A. Pierotti, Chem. Rev. 76, 717 (1976).
http://dx.doi.org/10.1021/cr60304a002
10.
10.J. Tomasi and M. Persico, Chem. Rev. 94, 2027 (1994).
http://dx.doi.org/10.1021/cr00031a013
11.
11.J. Tomasi, B. Mennucci, and E. Cancès, J. Mol. Struct.: THEOCHEM 464, 211 (1999).
http://dx.doi.org/10.1016/s0166-1280(98)00553-3
12.
12.F. M. Floris and J. Tomasi, J. Comput. Chem. 10, 616 (1986).
http://dx.doi.org/10.1002/jcc.540100504
13.
13.F. M. Floris, J. Tomasi, and J. L. Pascual-Ahuir, J. Comput. Chem. 12, 784 (1991).
http://dx.doi.org/10.1002/jcc.540120703
14.
14.J. Caillet and P. Claverie, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 34, 3266 (1978).
http://dx.doi.org/10.1107/s0567740878010638
15.
15.G. C. Kennedy, G. J. Wasserburg, H. C. Heard, and R. C. Newton, Am. J. Sci. 260, 501 (1962).
http://dx.doi.org/10.2475/ajs.260.7.501
16.
16.A. L. Boettcher, Am. Mineral. 69, 823 (1984).
17.
17.P. Richet and G. Ottonello, Elements 6, 315 (2010).
http://dx.doi.org/10.2113/gselements.6.5.315
18.
18.M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., Gaussian  03 Revision B.05,  Gaussian, Inc., Wallingford, CT, 2004.
19.
19.A. E. Stearn and H. Eyring, J. Chem. Phys. 5, 113 (1937).
http://dx.doi.org/10.1063/1.1749988
20.
20.Y. Bottinga, P. Richet, and D. F. Weill, Bull. Mineral. 106, 129 (1983).
21.
21.M. L. Rivers and I. S. E. Carmichael, J. Geophys. Res. 92, 9247 (1987).
http://dx.doi.org/10.1029/jb092ib09p09247
22.
22.L. Silver and E. Stolper, J. Geol. 93, 161 (1985).
http://dx.doi.org/10.1086/628938
23.
23.A. B. Belonoshko, P. Shi, and S. K. Saxena, Comput. Geosci. 18, 1267 (1992).
http://dx.doi.org/10.1016/0098-3004(92)90044-R
24.
24.M. Cossi, V. Barone, R. Cammi, and J. Tomasi, Chem. Phys. Lett. 255, 327 (1996).
http://dx.doi.org/10.1016/0009-2614(96)00349-1
25.
25.M. Cossi and V. Barone, J. Chem. Phys. 112, 2427 (2000).
http://dx.doi.org/10.1063/1.480808
26.
26.M. Valiev, E. J. Bylaska, N. Govind, K. Kowalski, T. P. Straatsma, H. J. J. van Dam, D. Wang, J. Nieplocha, E. Apra, T. L. Windus, and W. A. de Jong, Comput. Phys. Commun. 181, 1477 (2010).
http://dx.doi.org/10.1016/j.cpc.2010.04.018
27.
27.M. Swart, M. Solà, and F. M. Bickelhaupt, J. Chem. Phys. 131, 094103 (2009).
http://dx.doi.org/10.1063/1.3213193
28.
28.S. Grimme, J. Comput. Chem. 25, 1463 (2004).
http://dx.doi.org/10.1002/jcc.20078
29.
29.S. Grimme, J. Comput. Chem. 27, 1787 (2006).
http://dx.doi.org/10.1002/jcc.20495
30.
30.Q. Wu and W. Yang, J. Chem. Phys. 116, 515 (2002).
http://dx.doi.org/10.1063/1.1424928
31.
31.U. Zimmerli, M. Parrinello, and P. Koumoutsakos, J. Chem. Phys. 120, 2693 (2004).
http://dx.doi.org/10.1063/1.1637034
32.
32.B. Civalleri, E. Garrone, and P. Ugliengo, Chem. Phys. Lett. 294, 103 (1998).
http://dx.doi.org/10.1016/s0009-2614(98)00842-2
33.
33.K. Wendker, J. Thar, S. Zahn, and B. Kirchner, J. Phys. Chem. A 114, 9529 (2010).
http://dx.doi.org/10.1021/jp103470e
34.
34.P. Richet and A. Polian, Science 281, 396 (1998).
http://dx.doi.org/10.1126/science.281.5375.396
35.
35.P. Richet, A. Whittington, F. Holtz, H. Behrens, S. Ohlhorst, and M. Wilke, Contrib. Mineral. Petrol. 138, 337 (2000).
http://dx.doi.org/10.1007/s004100050567
36.
36.H. S. Frank and M. W. Evans, J. Chem. Phys. 13, 507 (1945).
http://dx.doi.org/10.1063/1.1723985
http://aip.metastore.ingenta.com/content/aip/journal/jcp/142/5/10.1063/1.4906745
Loading
/content/aip/journal/jcp/142/5/10.1063/1.4906745
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/142/5/10.1063/1.4906745
2015-02-03
2016-12-10

Abstract

We present an application of the Scaling Particle Theory (SPT) coupled with an assessment of the electronic, dispersive, and repulsive energy terms based on the Polarized Continuum Model (PCM) aimed at reproducing the observed solubility behavior of OH over the entire compositional range from pure molten silica to pure water and wide pressure and temperature regimes. It is shown that the solution energy is dominated by cavitation terms, mainly entropic in nature, which cause a large negative solution entropy and a consequent marked increase of gas phase fugacity with increasing temperatures. Besides, the solution enthalpy is negative and dominated by electrostatic terms which depict a pseudopotential well whose minimum occurs at a low water fraction (X) of about 6 mol. %. The fine tuning of the solute-solvent interaction is achieved through very limited adjustments of the electrostatic scaling factor γ which, in pure water, is slightly higher than the nominal value (i.e., γ  =  1.224 against 1.2), it attains its minimum at low HO content (γ = 0.9958) and then rises again at infinite dilution (γ   =  1.0945). The complex solution behavior is interpreted as due to the formation of energetically efficient hydrogen bonding when OH functionals are in appropriate amount and relative positioning with respect to the discrete OH molecules, reinforcing in this way the nominal solute-solvent inductive interaction. The interaction energy derived from the SPT-PCM calculations is then recast in terms of a sub-regular Redlich-Kister expansion of appropriate order whereas the thermodynamic properties of the HO component at its standard state (1-molal solution referred to infinite dilution) are calculated from partial differentiation of the solution energy over the intensive variables.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/142/5/1.4906745.html;jsessionid=klCEV0R569vOdm5qCzR6vyNK.x-aip-live-02?itemId=/content/aip/journal/jcp/142/5/10.1063/1.4906745&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/142/5/10.1063/1.4906745&pageURL=http://scitation.aip.org/content/aip/journal/jcp/142/5/10.1063/1.4906745'
Right1,Right2,Right3,