Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.M. Chaplin, “Opinion: Do we underestimate the importance of water in cell biology?,” Nat. Rev. Mol. Cell Biol. 7, 861866 (2006).
2.T. H. Basey-Fisher, S. M. Hanham, H. Andresen, S. A. Maier, M. M. Stevens, N. M. Alford, and N. Klein, “Microwave Debye relaxation analysis of dissolved proteins: Towards free-solution biosensing,” Appl. Phys. Lett. 99, 233703 (2011).
3.S. C. Saha, J. P. Grant, Y. Ma, A. Khalid, F. Hong, and D. R. S. Cumming, “Application of terahertz spectroscopy to the characterization of biological samples using birefringence silicon grating,” J. Biomed. Opt. 17(6), 067006 (2012).
4.S. Laurette, A. Treizebre, F. Affouard, and B. Bocquet, “Subterahertz characterization of ethanol hydration layers by bicrofluidic system,” Appl. Phys. Lett. 97, 111904 (2010).
5.D. M. Leitner, M. Gruebele, and M. Havenith, “Solvation dynamics of biomolecules: Modeling and terahertz experiments,” HFSP J. 2, 314323 (2008).
6.B. Jin, C. Zhang, P. Wu, and S. Liu, “Recent progress of terahertz spectroscopy on medicine and biology in China,” Int. J. Terahertz Sci. Technol. 3, 192200 (2010).
7.A. G. Markelz, A. Roitberg, and E. J. Heilweil, “Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0 THz,” Chem. Phys. Lett. 320, 4248 (2000).
8.S. E. Whitmire, D. Wolpert, A. G. Markelz, J. R. Hillebrecht, J. Galan, and R. R. Birge, “Protein flexibility and conformational state: A comparison of collective vibrational modes of wild-type and D96N bacteriorhodopsin,” Biophys. J. 85, 12691277 (2003).
9.M. Heyden, D. J. Tobias, and D. V. Matyushov, “Terahertz absorption of dilute aqueous solutions,” J. Chem. Phys. 137, 235103 (2012).
10.T. Q. Luong, P. K. Verma, R. K. Mitra, and M. Havenith, “Do hydration dynamics follow the structural perturbation during thermal denaturation of a protein: A terahertz absorption study,” Biophys. J. 101, 925933 (2011).
11.S. Ebbinghaus, S. J. Kim, M. Heyden, X. Yu, U. Heugen, M. Gruebele, D. M. Leitner, and M. Havenith, “An extended dynamical hydration shell around proteins,” PNAS 104, 2074920752 (2007).
12.V. Matvejev, Y. Zhang, and J. Stiens, “High performance integrated terahertz sensor for detection of biomolecular processes in solution,” IET Microwaves, Antennas and Propagation 8, 394-400 (2013).
13.J.-Y. Chen, J. R. Knab, S. Ye, Y. He, and A. G. Markelz, “Terahertz dielectric assay of solution phase protein binding,” Appl. Phys. Lett. 90, 243901-1243901-3 (2007).
14.J. R. Knab, J.-Y. Chen, Y. He, and A. G. Markelz, “Terahertz measurements of protein relaxational dynamics,” Proc. IEEE 95, 16051610 (2007).
15.Y. He, J.-Y. Chen, J. R. Knab, W. Zheng, and A. G. Markelz, “Evidence of protein collective motions on the picosecond timescale,” Biophys. J. 100, 10581065 (2011).
16.J. Knab, J.-Y. Chen, and A. G. Markelz, “Hydration dependence of conformational dielectric relaxation of lysozyme,” Biophys. J. 90, 25762581 (2006).
17.O. Kambara and K. Tominaga, “Structural fluctuation of proteins revealed by terahertz time-domain spectroscopy,” Spectroscopy 24, 149152 (2010).
18.N. Q. Vinh, S. J. Allen, and K. W. Plaxco, “Dielectric spectroscopy of proteins as a quantitative experimental test of computational models of their low-frequency harmonic motions,” J. Am. Chem. Soc. 133, 89428947 (2011).
19.N. Yamamoto, O. Kambara, K. Yamamoto, A. Tamura, S. Saito, and K. Tominaga, “Temperature and hydration dependence of Low-frequency spectra of poly-L-glutamic acid with different secondary structures studied by terahertz time-domain spectroscopy,” Soft Matter 8, 19972006 (2012).
20.A. G. Markelz, J. R. Knab, J.-Y. Chen, and Y. He, “Protein dynamical transition in terahertz dielectric response,” Chem. Phys. Lett. 442, 413417 (2007).
21.S. Laurette, A. Treizebre, A. Elagli, B. Hatirnaz, R. Froidevaux, F. Affouard, L. Duponchel, and B. Bocquet, “Highly sensitive terahertz spectroscopy in microsystem,” RSC Adv. 2, 1006410071 (2012).
22.R. J. Falconer and A. G. Markelz, “Terahertz spectroscopic analysis of peptides and proteins,” J. Infrared, Millimeter, Terahertz Waves 33, 973988 (2012).
23.S. Gekle and R. R. Netz, “Anisotropy in the dielectric spectrum of hydration water and its relation to water dynamics,” J. Chem. Phys. 137, 104704 (2012).
24.P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging—Modern techniques and applications,” Laser Photonics Rev. 5, 124166 (2011).
25.M. Heyden and M. Havenith, “Combining THz spectroscopy and MD simulations to study protein-hydration coupling,” Methods 52, 7483 (2010).
26.T. Ding, R. Li, J. A. Zeitler, T. L. Huber, L. F. Gladden, A. P. J. Middelberg, and R. J. Falconer, “Terahertz and far infrared spectroscopy of alanine-rich peptides having variable ellipticity,” Opt. Express 18, 2743127444 (2010).
27.P. Glancy and W. P. Beyermann, “Dielectric properties of fully hydrated nucleotides in the terahertz frequency range,” J. Chem. Phys. 132, 245102 (2010).
28.S. Ebbinghaus, K. Meister, B. Born, A. L. De Vries, M. Gruebele, and M. Havenith, “Antifreeze glycoprotein activity correlates with long-range protein-water dynamics,” J. Am. Chem. Soc. 132, 1221012211 (2010).
29.S. Ebbinghaus, S. J. Kim, M. Heyden, X. Yu, M. Gruebele, D. M. Leitner, and M. Havenith, “Protein sequence- and pH-dependent hydration probed by terahertz spectroscopy,” J. Am. Chem. Soc. 130, 23742375 (2008).
30.G. Niehues, M. Heyden, D. A. Schmidt, and M. Havenith, “Exploring hydrophobicity by THz absorption spectroscopy of solvated amino acids,” Faraday Discuss. 150, 193207 (2011).
31.M. Heyden, E. Bründermann, U. Heugen, G. Niehues, D. M. Leitner, and M. Havenith, “Long-range influence of carbohydrates on the solvation dynamics of waters answers from terahertz absorption measurements and molecular modeling simulations,” J. Am. Chem. Soc. 130, 57735779 (2008).
32.T. Arikawa, M. Nagai, and K. Tanaka, “Characterizing hydration state in solution using terahertz time-domain attenuated total reflection spectroscopy,” Chem. Phys. Lett. 457, 1217 (2008).
33.T. Ding, T. Huber, A. P. J. Middelberg, and R. J. Falconer, “Characterization of low-frequency modes in aqueous peptides using far-infrared spectroscopy and molecular dynamics simulation,” J. Phys. Chem. A 115, 1155911565 (2011).
34.P. A. George, W. Hui, F. Rana, B. G. Hawkins, A. E. Smith, and B. J. Kirby, “Microfluidic devices for terahertz spectroscopy of biomolecules,” Opt. Express 16, 1577-1582 (2008).
35.H. Yada, M. Nagai, and K. Tanaka, “Origin of the fast relaxation component of water and heavy water revealed by terahertz time-domain attenuated total reflection spectroscopy,” Chem. Phys. Lett. 464, 166170 (2008).
36.O. Sushko, K. Shala, R. Dubrovka, and R. S. Donnan, “Revised metrology for enhanced accuracy in complex optical constant determination by THz time-domain spectroscopy,” J. Opt. Soc. Am. A 30, 979986 (2013).
37.L. Duvillaret, F. Garet, and J.-L. Coutaz, “Highly precise determination of optical constants and sample thickness in terahertz time-domain spectroscopy,” Appl. Opt. 38, 409415 (1999).
38.B. Lee, “Calculation of volume fluctuation for globular protein models,” Proc. Natl. Acad. Sci. U. S. A. 80, 622-626 (1983).
39.O. Sushko, R. Dubrovka, and R. S. Donnan, “Terahertz spectral domain computational analysis of hydration shell of proteins with increasingly complex tertiary structure,” J. Phys. Chem. B 117, 1648616492 (2013).
40.B. Yang, R. J. Wylde, D. H. Martin, P. Goy, R. S. Donnan, and S. Caroopen, “Determination of the gyrotropic characteristics of hexaferrite ceramics from 75 to 600 GHz,” IEEE Trans. Microwave Theory Tech. 58, 3587-3597 (2010).
41.J. W. Bye, S. Meliga, D. Ferachou, G. Cinque, J. A. Zeitler, and R. J. Falconer, “Analysis of the hydration water around bovine serum albumin using terahertz coherent synchrotron radiation,” J. Phys. Chem. A 118, 8388 (2014).
42.U. Heugen, G. Schwaab, E. Brundermann, M. Heyden, X. Yu, D. M. Leitner, and M. Havenith, “Solute-induced retardation of water dynamics probed directly by terahertz spectroscopy,” PNAS 103, 1230112306 (2006).
43.J. Xu, K. W. Plaxco, and S. J. Allen, “Probing the collective vibrational dynamics of a protein in liquid water by terahertz absorption spectroscopy,” Protein Sci. 15, 11751181 (2006).
44.C. Zhang and S. M. Durbin, “Hydration-induced far-infrared absorption increase in myoglobin,” J. Phys. Chem. B 110, 23607-23613 (2006).
45.B. Born, H. Weingärtner, E. Bründermann, and M. Havenith, “Solvation dynamics of model peptides probed by terahertz spectroscopy. Observation of the onset of collective network motions,” J. Am. Chem. Soc. 131, 37523755 (2009).
46.N. Kaun, J. R. Baena, D. Newnham, and B. Lendl, “Terahertz pulsed spectroscopy as a new tool for measuring the structuring effect of solutes on water,” Appl. Spectrosc. 59, 505-510 (2005).
47.C. Mattea, J. Qvist, and B. Halle, “Dynamics at the protein-water interface from 17O spin relaxation in deeply supercooled solutions,” Biophys. J. 95, 29512963 (2008).
48.J. Qvist, E. Persson, C. Mattea, and B. Halle, “Time scales of water dynamics at biological interfaces: Peptides, proteins and cells,” Faraday Discuss. 141, 131144 (2009).
49.D. I. Svergun, S. Richard, M. H. J. Koch, Z. Sayers, S. Kuprin, and G. Zaccai, “Protein hydration in solution: Experimental observation by X-ray and neutron scattering,” Proc. Natl. Acad. Sci. U. S. A. 95, 22672272 (1998).
50.H. Frohlich, “The extraordinary dielectric properties of biological materials and the action of enzymes,” Proc. Natl. Acad. Sci. U. S. A. 72, 42114215 (1975).
51.A. Pertsemlidis, A. M. Saxena, A. K. Soper, T. Head-Gordon, and R. M. Glaeser, “Direct evidence for modified solvent structure within the hydration shell of a hydrophobic amino acid,” Proc. Natl. Acad. Sci. U. S. A. 93, 1076910774 (1996).
52.M. Harel, G. L. Kleywegt, R. B. Ravelli, I. Silman, and J. L. Sussman, “Crystal structure of an acetylcholinesterase-Fasciculin complex: Interaction of a three-fingered toxin from snake venom with its target,” Structure 3, 13551366 (1995).
53.P. Marchot, R. B. G. Ravelli, M. L. Raves, Y. Bourne, D. C. Vellom, J. Kanter, S. Camp, J. L. Sussman, and P. Taylor, “Soluble monomeric acetylcholinesterase from mouse: Expression, purification, and crystallization in complex with Fasciculin,” Protein Sci. 5, 672679 (1996).
54.D. R. Ripoll, C. H. Faerman, P. H. Axelsen, I. Silman, and J. L. Sussman, “An electrostatic mechanism for substrate guidance down the aromatic gorge of acetylcholinesterase,” Proc. Natl Acad. Sci. U. S. A. 90, 51285132 (1993).
55.C. E. Felder, J. Prilusky, I. Silman, and J. L. Sussman, “A Server and database for dipole moments of proteins,” Nucleic Acids Res. 35, W512W521 (2007).
56.A. Beneduci, “Which is the effective time scale of the fast Debye relaxation process in water,” J. Mol. Liquids 138, 55-60 (2008).
57.S. Perticaroli, L. Comez, M. Paolantoni, P. Sassi, L. Lupi, D. Fioretto, A. Paciaroni, and A. Morresi, “Broadband depolarized light scattering study of diluted protein aqueous solutions,” J. Phys. Chem. B 114, 8262-8269 (2010).
58.J. Sun, G. Niehues, H. Forbert, D. Decka, G. Schwaab, D. Marx, and M. Havenith, “Understanding THz spectra of aqueous solutions: Glycine in light and heavy water,” J. Am. Chem. Soc. 136, 5031-5038 (2014).
59.R. Li, C. D’Agostino, J. McGregor, M. D. Mantle, A. J. Zeitler, and L. F. Gladden, “Mesoscopic structuring and dynamics of alcohol/water solutions probed by terahertz time-domain spectroscopy and pulsed field gradient nuclear magnetic resonance,” J. Phys. Chem. B 118, 10156-10166 (2014).
60.K.-J. Tielrooij, J. Hunger, R. Buchner, M. Bonn, and H. J. Bakker, “Influence of concentration and temperature on the dynamics of water in the hydrophobic hydration shell of tetramethylurea,” J. Am. Chem. Soc. 132, 1567115678 (2010).

Data & Media loading...


Article metrics loading...



The initial purpose of the study is to systematically investigate the solvation properties of different proteins in water solution by terahertz (THz) radiation absorption. Transmission measurements of protein water solutions have been performed using a vector network analyser-driven quasi-optical bench covering the WR-3 waveguide band (0.220–0.325 THz). The following proteins, ranging from low to high molecular weight, were chosen for this study: lysozyme, myoglobin, and bovine serum albumin (BSA). Absorption properties of solutions were studied at different concentrations of proteins ranging from 2 to 100 mg/ml. The concentration-dependent absorption of protein molecules was determined by treating the solution as a two-component model first; then, based on protein absorptivity, the extent of the hydration shell is estimated. Protein molecules are shown to possess a concentration-dependent absorptivity in water solutions. Absorption curves of all three proteins sharply peak towards a dilution-limit that is attributed to the enhanced flexibility of protein and amino acid side chains. An alternative approach to the determination of hydration shell thickness is thereby suggested, based on protein absorptivity. The proposed approach is independent of the absorption of the hydration shell. The derived estimate of hydration shell thickness for each protein supports previous findings that protein-water interaction dynamics extends beyond 2-3 water solvation-layers as predicted by molecular dynamics simulations and other techniques such as NMR, X-ray scattering, and neutron scattering. According to our estimations, the radius of the dynamic hydration shell is 16, 19, and 25 Å, respectively, for lysozyme, myoglobin, and BSA proteins and correlates with the dipole moment of the protein. It is also seen that THz radiation can serve as an initial estimate of the protein hydrophobicity.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd