Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/142/8/10.1063/1.4913323
1.
1.R. D. Levine, Molecular Reaction Dynamics (Cambridge University Press, Cambridge, 2005).
2.
2.J. C. Polanyi, Acc. Chem. Res. 5, 161-168 (1972).
http://dx.doi.org/10.1021/ar50053a001
3.
3.J. C. Polanyi and W. H. Wong, J. Chem. Phys. 51, 1439-1450 (1969).
http://dx.doi.org/10.1063/1.1672194
4.
4.G. S. Hammond, J. Am. Chem. Soc. 77, 334-338 (1955).
http://dx.doi.org/10.1021/ja01607a027
5.
5.A. Sinha, M. C. Hsiao, and F. F. Crim, J. Chem. Phys. 94, 4928-4935 (1991).
http://dx.doi.org/10.1063/1.460578
6.
6.A. Sinha, J. D. Thoemke, and F. F. Crim, J. Chem. Phys. 96, 372-376 (1992).
http://dx.doi.org/10.1063/1.462473
7.
7.M. J. Bronikowski, W. R. Simpson, and R. N. Zare, J. Phys. Chem. 97, 2194-2203 (1993).
http://dx.doi.org/10.1021/j100112a021
8.
8.S. Yoon, S. Henton, A. N. Zivkovic, and F. F. Crim, J. Chem. Phys. 116, 10744-10752 (2002).
http://dx.doi.org/10.1063/1.1476318
9.
9.S. Yoon, R. J. Holiday, and F. F. Crim, J. Chem. Phys. 119, 4755-4761 (2003).
http://dx.doi.org/10.1063/1.1591176
10.
10.S. Yoon, R. J. Holiday, and F. F. Crim, J. Phys. Chem. B 109, 8388-8392 (2005).
http://dx.doi.org/10.1021/jp0463565
11.
11.C. J. Annesley, A. E. Berke, and F. F. Crim, J. Phys. Chem. A 112, 9448-9453 (2008).
http://dx.doi.org/10.1021/jp803901p
12.
12.S. Yoon, R. J. Holiday, E. L. Sibert III, and F. F. Crim, J. Chem. Phys. 119, 9568-9575 (2003).
http://dx.doi.org/10.1063/1.1615755
13.
13.W. R. Simpson, T. P. Rakitzis, S. A. Kandel, A. J. Orr-Ewing, and R. N. Zare, J. Chem. Phys. 103, 7313-7335 (1995).
http://dx.doi.org/10.1063/1.470305
14.
14.H. A. Bechtel, J. P. Camden, D. J. A. Brown, and R. N. Zare, J. Chem. Phys. 120, 5096-5103 (2004).
http://dx.doi.org/10.1063/1.1647533
15.
15.H. A. Bechtel, Z. H. Kim, J. P. Camden, and R. N. Zare, J. Chem. Phys. 120, 791-799 (2004).
http://dx.doi.org/10.1063/1.1630961
16.
16.H. A. Bechtel, J. P. Camden, D. J. A. Brown, M. R. Martin, R. N. Zare, and K. Vodopyanov, Angew. Chem., Int. Ed. 44, 2382-2385 (2005).
http://dx.doi.org/10.1002/anie.200462837
17.
17.M. R. Martin, D. J. A. Brown, A. S. Chiou, and R. N. Zare, J. Chem. Phys. 126, 044315 (2007).
http://dx.doi.org/10.1063/1.2431368
18.
18.F. F. Crim, Proc. Natl. Acad. Sci. U. S. A. 105, 12654-12661 (2008).
http://dx.doi.org/10.1073/pnas.0803010105
19.
19.F. F. Crim, Acc. Chem. Res. 32, 877-884 (1999).
http://dx.doi.org/10.1021/ar950046a
20.
20.R. N. Zare, Science 279, 1875-1879 (1998).
http://dx.doi.org/10.1126/science.279.5358.1875
21.
21.S. Yan, Y.-T. Wu, B. Zhang, X.-F. Yue, and K. Liu, Science 316, 1723-1726 (2007).
http://dx.doi.org/10.1126/science.1142313
22.
22.S. Yan, Y.-T. Wu, and K. Liu, Proc. Natl. Acad. Sci. U. S. A. 105, 12667-12672 (2008).
http://dx.doi.org/10.1073/pnas.0800220105
23.
23.S. Yan and K. Liu, Chin. J. Chem. Phys. 20, 333-338 (2007).
http://dx.doi.org/10.1088/1674-0068/20/04/333-338
24.
24.F. Wang, J.-S. Lin, Y. Cheng, and K. Liu, J. Phys. Chem. Lett. 4, 323-327 (2013).
http://dx.doi.org/10.1021/jz302017e
25.
25.H. Kawamata and K. Liu, J. Chem. Phys. 133, 124304 (2010).
http://dx.doi.org/10.1063/1.3482628
26.
26.J. Zhou, J. J. Lin, B. Zhang, and K. Liu, J. Phys. Chem. A 108, 7832-7836 (2004).
http://dx.doi.org/10.1021/jp040128t
27.
27.B. Zhang, K. Liu, G. Czako, and J. M. Bowman, Mol. Phys. 110, 1617-1626 (2012).
http://dx.doi.org/10.1080/00268976.2012.662600
28.
28.Y.-T. Wu and K. Liu, J. Chem. Phys. 129, 154302 (2008).
http://dx.doi.org/10.1063/1.2993264
29.
29.J. Riedel, S. Yan, and K. Liu, J. Phys. Chem. A 113, 14270-14276 (2009).
http://dx.doi.org/10.1021/jp902629h
30.
30.G. Czako and J. M. Bowman, J. Phys. Chem. A 118, 2839-2864 (2014).
http://dx.doi.org/10.1021/jp500085h
31.
31.J. Zhou, J. J. Lin, W. Shiu, S.-C. Pu, and K. Liu, J. Chem. Phys. 119, 2538-2544 (2003).
http://dx.doi.org/10.1063/1.1587112
32.
32.W. Shiu, J. J. Lin, K. Liu, M. Wu, and D. H. Parker, J. Chem. Phys. 120, 117-122 (2004).
http://dx.doi.org/10.1063/1.1629668
33.
33.J. Zhou, B. Zhang, J. J. Lin, and K. Liu, Mol. Phys. 103, 1757-1763 (2005).
http://dx.doi.org/10.1080/00268970500064838
34.
34.G. Nyman, J. Zhou, B. Zhang, and K. Liu, Isr. J. Chem. 47, 1-9 (2007).
http://dx.doi.org/10.1560/IJC.47.1.1
35.
35.F. Wang and K. Liu, Chem. Sci. 1, 126-133 (2010).
http://dx.doi.org/10.1039/c0sc00186d
36.
36.H. Pan and K. Liu, J. Chem. Phys. 140, 191101 (2014).
http://dx.doi.org/10.1063/1.4878094
37.
37.J. Zhou, J. J. Lin, and K. Liu, J. Chem. Phys. 119, 8289-8296 (2003).
http://dx.doi.org/10.1063/1.1611877
38.
38.J. Zhou, J. J. Lin, and K. Liu, J. Chem. Phys. 121, 813-818 (2004).
http://dx.doi.org/10.1063/1.1761051
39.
39.J. Zhou, J. J. Lin, and K. Liu, Mol. Phys. 108, 957-968 (2010).
http://dx.doi.org/10.1080/00268971003601589
40.
40.K. Liu, J. Chem. Phys. 125, 132307 (2006).
http://dx.doi.org/10.1063/1.2216706
41.
41.K. Liu, Adv. Chem. Phys. 149, 1-46 (2012), and references therein.
http://dx.doi.org/10.1155/2012/572148
42.
42.W. Zhang, H. Kawamata, and K. Liu, Science 325, 303-306 (2009).
http://dx.doi.org/10.1126/science.1175018
43.
43.J. J. Lin, J. Zhou, W. Shiu, and K. Liu, Rev. Sci. Instrum. 74, 2495-2500 (2003).
http://dx.doi.org/10.1063/1.1561604
44.
44.J. J. Lin, J. Zhou, W. Shiu, and K. Liu, Science 300, 966-969 (2003).
http://dx.doi.org/10.1126/science.1083672
45.
45.J. Zhou, J. J. Lin, W. Shiu, and K. Liu, Phys. Chem. Chem. Phys. 8, 3000-3006 (2006).
http://dx.doi.org/10.1039/b602434c
46.
46.K. Liu, Phys. Chem. Chem. Phys. 9, 17-30 (2007).
http://dx.doi.org/10.1039/b614801h
47.
47.G. Czako and J. M. Bowman, J. Am. Chem. Soc. 131, 17534-17535 (2009).
http://dx.doi.org/10.1021/ja906886z
48.
48.G. Czako and J. M. Bowman, J. Chem. Phys. 131, 244302 (2009).
http://dx.doi.org/10.1063/1.3276633
49.
49.G. Czako and J. M. Bowman, Phys. Chem. Chem. Phys. 13, 8306-8312 (2011).
http://dx.doi.org/10.1039/c0cp02456b
50.
50.G. Czako, B. C. Shepler, B. J. Braams, and J. M. Bowman, J. Chem. Phys. 130, 084301 (2009).
http://dx.doi.org/10.1063/1.3068528
51.
51.J. Yang, D. Zhang, B. Jiang, D. Dai, G. Wu, D. Zhang, and X. Yang, J. Phys. Chem. Lett. 5, 1790-1794 (2014).
http://dx.doi.org/10.1021/jz5007252
52.
52.H. Kawamata, W. Zhang, and K. Liu, Faraday Discuss. 157, 89-100 (2012).
http://dx.doi.org/10.1039/c2fd20004j
53.
53.Y. Cheng, H. Pan, F. Wang, and K. Liu, Phys. Chem. Chem. Phys. 16, 444-452 (2014).
http://dx.doi.org/10.1039/c3cp53036a
54.
54.G. Czako and J. M. Bowman, Proc. Natl. Acad. Sci. U. S. A. 109, 7997-8001 (2012).
http://dx.doi.org/10.1073/pnas.1202307109
55.
55.E. Gonzalez-Lavado, J. C. Corchado, and J. Espinosa-Garcia, J. Chem. Phys. 140, 064310 (2014).
http://dx.doi.org/10.1063/1.4864358
56.
56.R. Liu, M. Yang, G. Czako, J. M. Bowman, J. Li, and H. Guo, J. Phys. Chem. Lett. 3, 3776-3780 (2012).
http://dx.doi.org/10.1021/jz301735m
57.
57.G. Czako, R. Liu, M. Yang, J. Bowman, and H. Guo, J. Phys. Chem. A 117, 6409-6420 (2013).
http://dx.doi.org/10.1021/jp4038107
58.
58.W. Yan, F. Meng, and D. Wang, J. Phys. Chem. A 117, 12236-12242 (2013).
http://dx.doi.org/10.1021/jp4090298
59.
59.G. Czako, J. Phys. Chem. A 118, 11683-11687 (2014).
http://dx.doi.org/10.1021/jp509891w
60.
60.G. Czako, J. Chem. Phys. 140, 231102 (2014).
http://dx.doi.org/10.1063/1.4884387
61.
61.J. Espinosa-Garica, J. Phys. Chem. A 118, 3572-3579 (2014).
http://dx.doi.org/10.1021/jp502414e
62.
62.M. Monge-Palacios, E. Gonzalez-Lavado, and J. Espinosa-Garcia, J. Chem. Phys. 141, 094307 (2014).
http://dx.doi.org/10.1063/1.4893988
63.
63.E. Gonzalez-Lavado, C. Rangel, and J. Espinosa-Garcia, Phys. Chem. Chem. Phys. 16, 8428-8433 (2014).
http://dx.doi.org/10.1039/c4cp00403e
64.
64.I. Schechter and R. D. Levine, J. Phys. Chem. 93, 7973-7975 (1989).
http://dx.doi.org/10.1021/j100361a003
65.
65.R. D. Levine, J. Phys. Chem. 94, 8872-8880 (1990).
http://dx.doi.org/10.1021/j100389a006
66.
66.G. Czako and J. M. Bowman, J. Chem. Phys. 136, 044307 (2012).
http://dx.doi.org/10.1063/1.3679014
67.
67.C. Rangel, M. Navarrete, J. C. Corchado, and J. Espinosa-Garcia, J. Chem. Phys. 124, 124306 (2006).
http://dx.doi.org/10.1063/1.2179067
68.
68.Z. Zhang, Y. Zhou, D. H. Zhang, G. Czako, and J. M. Bowman, J. Phys. Chem. Lett. 3, 3416-3419 (2012).
http://dx.doi.org/10.1021/jz301649w
69.
69.F. Wang, J.-S. Lin, and K. Liu, Science 331, 900-903 (2011).
http://dx.doi.org/10.1126/science.1199771
70.
70.F. Wang, K. Liu, and T. P. Rakitzis, Nat. Chem. 4, 636-641 (2012).
http://dx.doi.org/10.1038/nchem.1383
71.
71.F. Wang and K. Liu, Chin. J. Chem. Phys. 26, 705-709 (2013).
http://dx.doi.org/10.1063/1674-0068/26/06/705-709
72.
72.F. Wang, J.-S. Lin, and K. Liu, J. Chem. Phys. 140, 084202 (2014).
http://dx.doi.org/10.1063/1.4865673
73.
73.J. Aldegunde, M. P. de Miranda, J. M. Haigh, B. K. Kendrick, V. Saez-Rabanos, and F. J. Aoiz, J. Phys. Chem. A 109, 6200-6217 (2005).
http://dx.doi.org/10.1021/jp0512208
74.
74.B. Zhang and K. Liu, J. Chem. Phys. 122, 101102 (2005).
http://dx.doi.org/10.1063/1.1871894
75.
75.D. Herschbach, Eur. Phys. J. D 38, 3-13 (2006).
http://dx.doi.org/10.1140/epjd/e2006-00027-1
76.
76.H. Guo and B. Jiang, Acc. Chem. Res. 47, 3679-3685 (2014).
http://dx.doi.org/10.1021/ar500350f
77.
77.B. Jiang and H. Guo, J. Chin. Chem. Soc. 61, 847-859 (2014).
http://dx.doi.org/10.1002/jccs.201400158
78.
78.B. Jiang and H. Guo, J. Chem. Phys. 138, 234104 (2013).
http://dx.doi.org/10.1063/1.4810007
79.
79.J. Li, B. Jiang, and H. Guo, J. Am. Chem. Soc. 135, 982-985 (2013).
http://dx.doi.org/10.1021/ja311159j
80.
80.B. Jiang, J. Li, and H. Guo, J. Chem. Phys. 140, 034112 (2014).
http://dx.doi.org/10.1063/1.4861668
81.
81.B. Jiang and H. Guo, J. Am. Chem. Soc. 135, 15251-15256 (2013).
http://dx.doi.org/10.1021/ja408422y
82.
82.B. Jiang and H. Guo, J. Phys. Chem. C 117, 16127-16135 (2013).
http://dx.doi.org/10.1021/jp405720c
83.
83.B. Jiang, R. Liu, J. Li, D. Xie, M. Yang, and H. Guo, Chem. Sci. 4, 3249-3254 (2013).
http://dx.doi.org/10.1039/c3sc51040a
84.
84.G. Czako, Q. Shuai, K. Liu, and J. M. Bowman, J. Chem. Phys. 133, 131101 (2010).
http://dx.doi.org/10.1063/1.3490795
85.
85.F. Wang and K. Liu, J. Phys. Chem. A 117, 8536-8544 (2013).
http://dx.doi.org/10.1021/jp4014866
86.
86.N. Sathyamurthy, Chem. Rev. 83, 601-618 (1983), and references therein.
http://dx.doi.org/10.1021/cr00058a001
87.
87.K. Liu, Int. Rev. Phys. Chem. 20, 189-217 (2001).
http://dx.doi.org/10.1080/01442350110034057
88.
88.R. Liu, F. Wang, B. Jiang, G. Czako, M. Yang, K. Liu, and H. Guo, J. Chem. Phys. 141, 074310 (2014).
http://dx.doi.org/10.1063/1.4892598
89.
89.H. Song, J. Li, B. Jiang, M. Yang, Y. Lu, and H. Guo, J. Chem. Phys. 140, 084307 (2014).
http://dx.doi.org/10.1063/1.4866426
http://aip.metastore.ingenta.com/content/aip/journal/jcp/142/8/10.1063/1.4913323
Loading
/content/aip/journal/jcp/142/8/10.1063/1.4913323
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/142/8/10.1063/1.4913323
2015-02-23
2016-09-29

Abstract

The concept of preferred collision geometry in a bimolecular reaction is at the heart of reaction dynamics. Exemplified by a series of crossed molecular beam studies on the reactions of a C–H stretch-excited CHD( = 1) with F, Cl, and O(3P) atoms, two types of steric control of chemical reactivity will be highlighted. A control is governed in a reaction with strong anisotropic entry valley that can significantly steer the incoming trajectories. This disorientation effect is illustrated by the F and O(3P) + CHD( = 1) reactions. In the former case, the long-range anisotropic interaction acts like an optical “negative” lens by deflecting the trajectories away from the favored transition-state geometry, and thus inhibiting the bond rupture of the stretch-excited CHD. On the contrary, the interaction between O(3P) and CHD( = 1) behaves as a “positive” lens by funneling the large impact-parameter collisions into the cone of acceptance, and thereby enhances the reactivity. As for reactions with relatively weak anisotropic interactions in the entry valley, an control can be performed by exploiting the polarization property of the infrared excitation laser to polarize the reactants in space, as demonstrated in the reaction of Cl with a pre-aligned CHD( = 1) reactant. A simpler case, the end-on versus side-on collisions, will be elucidated for demonstrating a means to disentangle the impact-parameter averaging. A few general remarks about some closely related issues, such as mode-, bond-selectivity, and Polanyi’s rules, are made.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/142/8/1.4913323.html;jsessionid=tZw8QhrTo1PK0KrSBPV0t34Z.x-aip-live-06?itemId=/content/aip/journal/jcp/142/8/10.1063/1.4913323&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/142/8/10.1063/1.4913323&pageURL=http://scitation.aip.org/content/aip/journal/jcp/142/8/10.1063/1.4913323'
Right1,Right2,Right3,