Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.X. S. Zhao, J. Mater. Chem. 16, 623 (2006).
2.Y.-Z. Xing, Z.-X. Luo, A. Kleinhammes, and Y. Wu, Carbon 77, 1132 (2014).
3.H. Wang, T. K. J. Köster, N. M. Trease, J. Ségalini, P.-L. Taberna, P. Simon, Y. Gogotsi, and C. P. Grey, J. Am. Chem. Soc. 133, 19270 (2011).
4.A. C. Forse, J. M. Griffin, H. Wang, N. M. Trease, V. Presser, Y. Gogotsi, P. Simon, and C. P. Grey, Phys. Chem. Chem. Phys. 15, 7722 (2013).
5.H. Wang, A. C. Forse, J. M. Griffin, N. M. Trease, L. Trognko, P.-L. Taberna, P. Simon, and C. P. Grey, J. Am. Chem. Soc. 135, 18968 (2013).
6.J. M. Griffin, A. C. Forse, H. Wang, N. M. Trease, P.-L. Taberna, P. Simon, and C. P. Grey, “Ion counting in supercapacitor electrodes using NMR spectroscopy,” Farady Discuss. (published online).
7.P. Lazzeretti, Prog. Nucl. Magn. Reson. Spectrosc. 36, 1 (2000).
8.A. C. Forse, J. M. Griffin, V. Presser, Y. Gogotsi, and C. P. Grey, J. Phys. Chem. C 118, 7508 (2014).
9.L. Borchardt, M. Oschatz, S. Paasch, S. Kaskel, and E. Brunner, Phys. Chem. Chem. Phys. 15, 15177 (2013).
10.R. J. Anderson, T. P. McNicholas, A. Kleinhammes, A. Wang, J. Liu, and Y. Wu, J. Am. Chem. Soc. 132, 8618 (2010).
11.R. C. Haddon, Nature 378, 249 (1995).
12.T. Heine, C. Corminboeuf, and G. Seifert, Chem. Rev. 105, 3889 (2005).
13.J. Facelli, Magn. Reson. Chem. 44, 401 (2006).
14.M. Levesque, M. Duvail, I. Pagonabarraga, D. Frenkel, and B. Rotenberg, Phys. Rev. E 88, 013308 (2013).
15.P. N. Sen, J. Chem. Phys. 119, 9871 (2003).
16.P. N. Sen, Concepts Magn. Reson., Part A 23A, 1 (2004).
17.O. K. Dudko, A. M. Berezhkovskii, and G. H. Weiss, J. Phys. Chem. B 109, 21296 (2005).
18.P. I. Ravikovitch and A. V. Neimark, Colloids Surf., A 187–188, 11 (2001).
19.R. Dash, J. Chmiola, G. Yushin, Y. Gogotsi, G. Laudisio, J. Singer, J. Fischer, and S. Kucheyev, Carbon 44, 2489 (2006).
20.G. Feng, R. Qiao, J. Huang, B. G. Sumpter, and V. Meunier, J. Phys. Chem. C 114, 18012 (2010).
21.G. Feng, R. Qiao, J. Huang, B. G. Sumpter, and V. Meunier, ACS Nano 4, 2382 (2010).
22.L. Xing, J. Vatamanu, O. Borodin, and D. Bedrov, J. Phys. Chem. Lett. 4, 132 (2013).
23.D.-e. Jiang, Z. Jin, D. Henderson, and J. Wu, J. Phys. Chem. Lett. 3, 1727 (2012).
24.D. Frenkel, Phys. Lett. A 121, 385 (1987).
25.B. Rotenberg, I. Pagonabarraga, and D. Frenkel, Europhys. Lett. 83, 34004 (2008).
26.M. H. Levitt, Spin Dynamics, Basis of Nuclear Magnetic Resonance (John Wiley and Sons, Ltd., 2008).
27.J. Cavanagh, W. J. Fairbrother, A. G. Palmer III, and N. J. Skelton, Protein NMR Spectroscopy, Principles and Practice (Academic Press, Inc., 1996).
28.C. Merlet, M. Salanne, B. Rotenberg, and P. A. Madden, Electrochim. Acta 101, 262 (2013).
29.J. Juselius and D. Sundholm, Phys. Chem. Chem. Phys. 1, 3429 (1999).
30.C. Merlet, Ph.D. thesis,Université Pierre et Marie Curie, 2013.
31.A. C. Forse, J. M. Griffin, C. Merlet, P. M. Bayley, H. Wang, P. Simon, and C. P. Grey, “NMR study of ion dynamics and charge storage in ionic liquid supercapacitors” (unpublished).
32.P. J. F. Harris, J. Mater. Sci. 48, 565 (2013).
33.J. C. Palmer, A. Llobet, S.-H. Yeon, J. E. Fischer, Y. Shi, Y. Gogotsi, and K. E. Gubbins, Carbon 48, 1116 (2010).
34.Y. Xu, T. Watermann, H.-H. Limbach, T. Gutmann, D. Sebastiani, and G. Buntkowsky, Phys. Chem. Chem. Phys. 16, 9327 (2014).

Data & Media loading...


Article metrics loading...



A coarse-grained simulation method to predict nuclear magnetic resonance (NMR) spectra of ions diffusing in porous carbons is proposed. The coarse-grained model uses input from molecular dynamics simulations such as the free-energy profile for ionic adsorption, and density-functional theory calculations are used to predict the NMR chemical shift of the diffusing ions. The approach is used to compute NMR spectra of ions in slit pores with pore widths ranging from 2 to 10 nm. As diffusion inside pores is fast, the NMR spectrum of an ion trapped in a single mesopore will be a sharp peak with a pore size dependent chemical shift. To account for the experimentally observed NMR line shapes, our simulations must model the relatively slow exchange between different pores. We show that the computed NMR line shapes depend on both the pore size distribution and the spatial arrangement of the pores. The technique presented in this work provides a tool to extract information about the spatial distribution of pore sizes from NMR spectra. Such information is difficult to obtain from other characterisation techniques.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd