Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/142/9/10.1063/1.4913368
1.
1.X. S. Zhao, J. Mater. Chem. 16, 623 (2006).
http://dx.doi.org/10.1039/b600327n
2.
2.Y.-Z. Xing, Z.-X. Luo, A. Kleinhammes, and Y. Wu, Carbon 77, 1132 (2014).
http://dx.doi.org/10.1016/j.carbon.2014.06.031
3.
3.H. Wang, T. K. J. Köster, N. M. Trease, J. Ségalini, P.-L. Taberna, P. Simon, Y. Gogotsi, and C. P. Grey, J. Am. Chem. Soc. 133, 19270 (2011).
http://dx.doi.org/10.1021/ja2072115
4.
4.A. C. Forse, J. M. Griffin, H. Wang, N. M. Trease, V. Presser, Y. Gogotsi, P. Simon, and C. P. Grey, Phys. Chem. Chem. Phys. 15, 7722 (2013).
http://dx.doi.org/10.1039/c3cp51210j
5.
5.H. Wang, A. C. Forse, J. M. Griffin, N. M. Trease, L. Trognko, P.-L. Taberna, P. Simon, and C. P. Grey, J. Am. Chem. Soc. 135, 18968 (2013).
http://dx.doi.org/10.1021/ja410287s
6.
6.J. M. Griffin, A. C. Forse, H. Wang, N. M. Trease, P.-L. Taberna, P. Simon, and C. P. Grey, “Ion counting in supercapacitor electrodes using NMR spectroscopy,” Farady Discuss. (published online).
http://dx.doi.org/10.1039/C4FD00138A
7.
7.P. Lazzeretti, Prog. Nucl. Magn. Reson. Spectrosc. 36, 1 (2000).
http://dx.doi.org/10.1016/S0079-6565(99)00021-7
8.
8.A. C. Forse, J. M. Griffin, V. Presser, Y. Gogotsi, and C. P. Grey, J. Phys. Chem. C 118, 7508 (2014).
http://dx.doi.org/10.1021/jp502387x
9.
9.L. Borchardt, M. Oschatz, S. Paasch, S. Kaskel, and E. Brunner, Phys. Chem. Chem. Phys. 15, 15177 (2013).
http://dx.doi.org/10.1039/c3cp52283k
10.
10.R. J. Anderson, T. P. McNicholas, A. Kleinhammes, A. Wang, J. Liu, and Y. Wu, J. Am. Chem. Soc. 132, 8618 (2010).
http://dx.doi.org/10.1021/ja9109924
11.
11.R. C. Haddon, Nature 378, 249 (1995).
http://dx.doi.org/10.1038/378249a0
12.
12.T. Heine, C. Corminboeuf, and G. Seifert, Chem. Rev. 105, 3889 (2005).
http://dx.doi.org/10.1021/cr030082k
13.
13.J. Facelli, Magn. Reson. Chem. 44, 401 (2006).
http://dx.doi.org/10.1002/mrc.1754
14.
14.M. Levesque, M. Duvail, I. Pagonabarraga, D. Frenkel, and B. Rotenberg, Phys. Rev. E 88, 013308 (2013).
http://dx.doi.org/10.1103/PhysRevE.88.013308
15.
15.P. N. Sen, J. Chem. Phys. 119, 9871 (2003).
http://dx.doi.org/10.1063/1.1611477
16.
16.P. N. Sen, Concepts Magn. Reson., Part A 23A, 1 (2004).
http://dx.doi.org/10.1002/cmr.a.20017
17.
17.O. K. Dudko, A. M. Berezhkovskii, and G. H. Weiss, J. Phys. Chem. B 109, 21296 (2005).
http://dx.doi.org/10.1021/jp051172r
18.
18.P. I. Ravikovitch and A. V. Neimark, Colloids Surf., A 187–188, 11 (2001).
http://dx.doi.org/10.1016/S0927-7757(01)00614-8
19.
19.R. Dash, J. Chmiola, G. Yushin, Y. Gogotsi, G. Laudisio, J. Singer, J. Fischer, and S. Kucheyev, Carbon 44, 2489 (2006).
http://dx.doi.org/10.1016/j.carbon.2006.04.035
20.
20.G. Feng, R. Qiao, J. Huang, B. G. Sumpter, and V. Meunier, J. Phys. Chem. C 114, 18012 (2010).
http://dx.doi.org/10.1021/jp107125m
21.
21.G. Feng, R. Qiao, J. Huang, B. G. Sumpter, and V. Meunier, ACS Nano 4, 2382 (2010).
http://dx.doi.org/10.1021/nn100126w
22.
22.L. Xing, J. Vatamanu, O. Borodin, and D. Bedrov, J. Phys. Chem. Lett. 4, 132 (2013).
http://dx.doi.org/10.1021/jz301782f
23.
23.D.-e. Jiang, Z. Jin, D. Henderson, and J. Wu, J. Phys. Chem. Lett. 3, 1727 (2012).
http://dx.doi.org/10.1021/jz3004624
24.
24.D. Frenkel, Phys. Lett. A 121, 385 (1987).
http://dx.doi.org/10.1016/0375-9601(87)90482-8
25.
25.B. Rotenberg, I. Pagonabarraga, and D. Frenkel, Europhys. Lett. 83, 34004 (2008).
http://dx.doi.org/10.1209/0295-5075/83/34004
26.
26.M. H. Levitt, Spin Dynamics, Basis of Nuclear Magnetic Resonance (John Wiley and Sons, Ltd., 2008).
27.
27.J. Cavanagh, W. J. Fairbrother, A. G. Palmer III, and N. J. Skelton, Protein NMR Spectroscopy, Principles and Practice (Academic Press, Inc., 1996).
28.
28.C. Merlet, M. Salanne, B. Rotenberg, and P. A. Madden, Electrochim. Acta 101, 262 (2013).
http://dx.doi.org/10.1016/j.electacta.2012.12.107
29.
29.J. Juselius and D. Sundholm, Phys. Chem. Chem. Phys. 1, 3429 (1999).
http://dx.doi.org/10.1039/a903847g
30.
30.C. Merlet, Ph.D. thesis,Université Pierre et Marie Curie, 2013.
31.
31.A. C. Forse, J. M. Griffin, C. Merlet, P. M. Bayley, H. Wang, P. Simon, and C. P. Grey, “NMR study of ion dynamics and charge storage in ionic liquid supercapacitors” (unpublished).
32.
32.P. J. F. Harris, J. Mater. Sci. 48, 565 (2013).
http://dx.doi.org/10.1007/s10853-012-6788-1
33.
33.J. C. Palmer, A. Llobet, S.-H. Yeon, J. E. Fischer, Y. Shi, Y. Gogotsi, and K. E. Gubbins, Carbon 48, 1116 (2010).
http://dx.doi.org/10.1016/j.carbon.2009.11.033
34.
34.Y. Xu, T. Watermann, H.-H. Limbach, T. Gutmann, D. Sebastiani, and G. Buntkowsky, Phys. Chem. Chem. Phys. 16, 9327 (2014).
http://dx.doi.org/10.1039/c4cp00808a
http://aip.metastore.ingenta.com/content/aip/journal/jcp/142/9/10.1063/1.4913368
Loading
/content/aip/journal/jcp/142/9/10.1063/1.4913368
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/142/9/10.1063/1.4913368
2015-03-02
2016-12-05

Abstract

A coarse-grained simulation method to predict nuclear magnetic resonance (NMR) spectra of ions diffusing in porous carbons is proposed. The coarse-grained model uses input from molecular dynamics simulations such as the free-energy profile for ionic adsorption, and density-functional theory calculations are used to predict the NMR chemical shift of the diffusing ions. The approach is used to compute NMR spectra of ions in slit pores with pore widths ranging from 2 to 10 nm. As diffusion inside pores is fast, the NMR spectrum of an ion trapped in a single mesopore will be a sharp peak with a pore size dependent chemical shift. To account for the experimentally observed NMR line shapes, our simulations must model the relatively slow exchange between different pores. We show that the computed NMR line shapes depend on both the pore size distribution and the spatial arrangement of the pores. The technique presented in this work provides a tool to extract information about the spatial distribution of pore sizes from NMR spectra. Such information is difficult to obtain from other characterisation techniques.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/142/9/1.4913368.html;jsessionid=RIPVGkiK4APP_B6PlzLYRSMz.x-aip-live-02?itemId=/content/aip/journal/jcp/142/9/10.1063/1.4913368&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/142/9/10.1063/1.4913368&pageURL=http://scitation.aip.org/content/aip/journal/jcp/142/9/10.1063/1.4913368'
Right1,Right2,Right3,