Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/142/9/10.1063/1.4913924
1.
1.L. Herk, M. Feld, and M. Szwarc, J. Am. Chem. Soc. 83, 2998 (1961).
http://dx.doi.org/10.1021/ja01475a005
2.
2.P. S. Skell and D. D. May, J. Am. Chem. Soc. 105, 3999 (1983).
http://dx.doi.org/10.1021/ja00350a043
3.
3.B. S. Wang, H. Hou, and Y. S. Gu, J. Phys. Chem. A 103, 8021 (1999).
http://dx.doi.org/10.1021/jp991203g
4.
4.Z. Y. Zhou, X. L. Cheng, X. M. Zhou, and H. Fu, Chem. Phys. Lett. 353, 281 (2002).
http://dx.doi.org/10.1016/S0009-2614(02)00037-4
5.
5.Y. Z. Zhou, S. Li, Q. S. Li, and S. W. Zhang, J. Mol. Struct.: THEOCHEM 854, 40 (2008).
http://dx.doi.org/10.1016/j.theochem.2007.12.033
6.
6.S. D. Peyerimhoff, P. S. Skell, D. D. May, and R. J. Buenker, J. Am. Chem. Soc. 104, 4515 (1982).
http://dx.doi.org/10.1021/ja00381a002
7.
7.A. Rauk, D. Yu, and D. A. Armstrong, J. Am. Chem. Soc. 116, 8222 (1994).
http://dx.doi.org/10.1021/ja00097a031
8.
8.E. Sicilia, F. P. Dimaio, and N. Russo, J. Phys. Chem. 97, 528 (1993).
http://dx.doi.org/10.1021/j100104a043
9.
9.M. Kieninger, O. N. Ventura, and S. Suhai, Int. J. Quantum Chem. 70, 253 (1998).
http://dx.doi.org/10.1002/(sici)1097-461x(1998)70:2¡253::aid-qua2¿3.0.co;2-t
10.
10.P. G. Wenthold, D. A. Hrovat, W. T. Borden, and W. C. Lineberger, Science 272, 1456 (1996).
http://dx.doi.org/10.1126/science.272.5267.1456
11.
11.X. B. Wang, H. K. Woo, and L. S. Wang, J. Chem. Phys. 123, 051106 (2005).
http://dx.doi.org/10.1063/1.1998787
12.
12.X. B. Wang and L. S. Wang, Rev. Sci. Instrum. 79, 073108 (2008).
http://dx.doi.org/10.1063/1.2957610
13.
13.P. D. Dau, H. T. Liu, D. L. Huang, and L. S. Wang, J. Chem. Phys. 137, 116101 (2012).
http://dx.doi.org/10.1063/1.4753421
14.
14.Z. Lu and R. E. Continetti, J. Phys. Chem. A 108, 9962 (2004).
http://dx.doi.org/10.1021/jp040355v
15.
15.M. V. Muftakhov, Y. V. Vasil’ev, and V. A. Mazunov, Rapid Commun. Mass Spectrom. 13, 1104 (1999).
http://dx.doi.org/10.1002/(sici)1097-0231(19990630)13:12¡1104::aid-rcm619¿3.0.co;2-c
16.
16.R. Yamdagni and P. Kebarle, Ber. Bunsen-Ges. Phys. Chem. 78, 181 (1974).
17.
17.W. E. Wentworth, E. Chen, and J. C. Steelhammer, J. Phys. Chem. 72, 2671 (1968).
http://dx.doi.org/10.1021/j100853a080
18.
18.L. S. Wang, C. F. Ding, X. B. Wang, and J. B. Nicholas, Phys. Rev. Lett. 81, 2667 (1998).
http://dx.doi.org/10.1103/PhysRevLett.81.2667
19.
19.X. B. Wang, H. K. Woo, L. S. Wang, B. Minofar, and P. Jungwirth, J. Phys. Chem. A 110, 5047 (2006).
http://dx.doi.org/10.1021/jp060138p
20.
20.E. H. Kim, S. E. Bradforth, D. W. Arnold, R. B. Metz, and D. M. Neumark, J. Chem. Phys. 103, 7801 (1995).
http://dx.doi.org/10.1063/1.470196
21.
21.E. Garand, K. Klein, J. F. Stanton, J. Zhou, T. I. Yacovitch, and D. M. Neumark, J. Phys. Chem. A 114, 1374 (2010).
http://dx.doi.org/10.1021/jp9067894
22.
22.W. R. Garrett, Chem. Phys. Lett. 5, 393 (1970).
http://dx.doi.org/10.1016/0009-2614(70)80045-8
23.
23.W. R. Garrett, Phys. Rev. A 3, 961 (1971).
http://dx.doi.org/10.1103/PhysRevA.3.961
24.
24.K. Rohr and F. Linder, J. Phys. B: At. Mol. Phys. 9, 2521 (1976).
http://dx.doi.org/10.1088/0022-3700/9/14/020
25.
25.J. E. Turner, Am. J. Phys. 45, 758 (1977).
http://dx.doi.org/10.1119/1.10767
26.
26.J. A. Stockdale, F. J. Davis, R. N. Compton, and C. E. Klots, J. Chem. Phys. 60, 4279 (1974).
http://dx.doi.org/10.1063/1.1680900
27.
27.H. Haberland, C. Ludewigt, H. G. Schindler, and D. R. Worsnop, J. Chem. Phys. 81, 3742 (1984).
http://dx.doi.org/10.1063/1.448127
28.
28.C. Desfrancois, B. Baillon, J. P. Schermann, S. T. Arnold, J. H. Hendricks, and K. H. Bowen, Phys. Rev. Lett. 72, 48 (1994).
http://dx.doi.org/10.1103/physrevlett.72.48
29.
29.N. I. Hammer, R. J. Hinde, R. N. Compton, K. Diri, K. D. Jordan, D. Radisic, S. T. Stokes, and K. H. Bowen, J. Chem. Phys. 120, 685 (2004).
http://dx.doi.org/10.1063/1.1629669
30.
30.A. H. Zimmerman and J. I. Brauman, J. Chem. Phys. 66, 5823 (1977).
http://dx.doi.org/10.1063/1.433860
31.
31.R. L. Jackson, A. H. Zimmerman, and J. I. Brauman, J. Chem. Phys. 71, 2088 (1979).
http://dx.doi.org/10.1063/1.438579
32.
32.R. L. Jackson, P. C. Hiberty, and J. I. Brauman, J. Chem. Phys. 74, 3705 (1981).
http://dx.doi.org/10.1063/1.441598
33.
33.K. R. Lykke, R. D. Mead, and W. C. Lineberger, Phys. Rev. Lett. 52, 2221 (1984).
http://dx.doi.org/10.1103/PhysRevLett.52.2221
34.
34.K. R. Lykke, D. M. Neumark, T. Andersen, V. J. Trapa, and W. C. Lineberger, J. Chem. Phys. 87, 6842 (1987).
http://dx.doi.org/10.1063/1.453379
35.
35.K. Yokoyama, G. W. Leach, J. B. Kim, and W. C. Lineberger, J. Chem. Phys. 105, 10696 (1996).
http://dx.doi.org/10.1063/1.472878
36.
36.H. T. Liu, C. G. Ning, D. L. Huang, P. D. Dau, and L. S. Wang, Angew. Chem., Int. Ed. 52, 8976 (2013).
http://dx.doi.org/10.1002/anie.201304695
37.
37.R. S. Berry, J. Chem. Phys. 45, 1228 (1966).
http://dx.doi.org/10.1063/1.1727742
38.
38.J. Simons, J. Am. Chem. Soc. 103, 3971 (1981).
http://dx.doi.org/10.1021/ja00404a002
39.
39.H. T. Liu, C. G. Ning, D. L. Huang, and L. S. Wang, Angew. Chem., Int. Ed. 53, 2464 (2014).
http://dx.doi.org/10.1002/anie.201310323
40.
40. The dipole moment and the frequencies of CH3COO• were calculated at the B3LYP/6–31+G(d,p) level of theory.
41.
41.I. Leon, Z. Yang, H. T. Liu, and L. S. Wang, Rev. Sci. Instrum. 85, 083106 (2014).
http://dx.doi.org/10.1063/1.4891701
42.
42.L. S. Wang, C. F. Ding, X. B. Wang, and S. E. Barlow, Rev. Sci. Instrum. 70, 1957 (1999).
http://dx.doi.org/10.1063/1.1149694
43.
43.H. T. Liu, Y. L. Wang, X. G. Xiong, P. D. Dau, Z. A. Piazza, D. L. Huang, C. Q. Xu, J. Li, and L. S. Wang, Chem. Sci. 3, 3286 (2012).
http://dx.doi.org/10.1039/c2sc20984e
44.
44.P. D. Dau, J. Su, H. T. Liu, J. B. Liu, D. L. Huang, J. Li, and L. S. Wang, Chem. Sci. 3, 1137 (2012).
http://dx.doi.org/10.1039/c2sc01052f
45.
45.P. D. Dau, J. Su, H. T. Liu, D. L. Huang, J. Li, and L. S. Wang, J. Chem. Phys. 137, 064315 (2012).
http://dx.doi.org/10.1063/1.4742062
46.
46.D. M. Neumark, J. Phys. Chem. A 112, 13287 (2008).
http://dx.doi.org/10.1021/jp807182q
47.
47.E. R. Grumbling and A. Sanov, J. Chem. Phys. 135, 164302 (2011).
http://dx.doi.org/10.1063/1.3653234
48.
48.G. A. Garcia, L. Nahon, and I. Powis, Rev. Sci. Instrum. 75, 4989 (2004).
http://dx.doi.org/10.1063/1.1807578
49.
49.V. Dribinski, A. Ossadtchi, V. A. Mandelshtam, and H. Reisler, Rev. Sci. Instrum. 73, 2634 (2002).
http://dx.doi.org/10.1063/1.1482156
50.
50.D. L. Huang, P. D. Dau, H. T. Liu, and L. S. Wang, J. Chem. Phys. 140, 224315 (2014).
http://dx.doi.org/10.1063/1.4881421
51.
51.See supplementary material at http://dx.doi.org/10.1063/1.4913924 for the theoretical vibrational frequencies of CH3COO•, the photodetachment spectra of CH3COOshowing the ground vibrational level of the dipole-bound state, and the photoelectron images corresponding to Fig. 1.[Supplementary Material]
52.
52.C. M. Western, PGOPHER, a Program for Simulating Rotational Structure(University of Bristol, 2013) http://pgopher.chm.bris.ac.uk.
http://aip.metastore.ingenta.com/content/aip/journal/jcp/142/9/10.1063/1.4913924
Loading
/content/aip/journal/jcp/142/9/10.1063/1.4913924
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/142/9/10.1063/1.4913924
2015-03-04
2016-12-09

Abstract

We report the observation of a dipole-bound state and a high-resolution photoelectron imaging study of cryogenically cooled acetate anions (CHCOO). Both high-resolution non-resonant and resonant photoelectron spectra via the dipole-bound state of CHCOO are obtained. The binding energy of the dipole-bound state relative to the detachment threshold is determined to be 53 ± 8 cm−1. The electron affinity of the CHCOO neutral radical is measured accurately as 26 236 ± 8 cm−1 (3.2528 ± 0.0010 eV) using high-resolution photoelectron imaging. This accurate electron affinity is validated by observation of autodetachment from two vibrational levels of the dipole-bound state of CHCOO. Excitation spectra to the dipole-bound states yield rotational profiles, allowing the rotational temperature of the trapped CHCOO anions to be evaluated.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/142/9/1.4913924.html;jsessionid=eSnxOeDKPhjWvR5c2USNlkT6.x-aip-live-06?itemId=/content/aip/journal/jcp/142/9/10.1063/1.4913924&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/142/9/10.1063/1.4913924&pageURL=http://scitation.aip.org/content/aip/journal/jcp/142/9/10.1063/1.4913924'
Right1,Right2,Right3,