Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/142/9/10.1063/1.4914315
1.
1.J. D. Thompson, C. J. Cramer, and D. G. Truhlar, “Predicting aqueous solubilities from aqueous free energies of solvation and experimental or calculated vapor pressures of pure substances,” J. Chem. Phys. 119, 16611670 (2003).
http://dx.doi.org/10.1063/1.1579474
2.
2.D. S. Palmer, A. Llinàs, I. Morao, G. M. Day, J. M. Goodman, R. C. Glen, and J. B. O. Mitchell, “Predicting intrinsic aqueous solubility by a thermodynamic cycle,” Mol. Pharmaceutics 5, 266279 (2008).
http://dx.doi.org/10.1021/mp7000878
3.
3.D. S. Palmer, J. L. McDonagh, J. B. O. Mitchell, T. van Mourik, and M. V. Fedorov, “First-principles calculation of the intrinsic aqueous solubility of crystalline druglike molecules,” J. Chem. Theory Comput. 8, 33223337 (2012).
http://dx.doi.org/10.1021/ct300345m
4.
4.R. Casasnovas, J. Ortega-Castro, J. Frau, J. Donoso, and F. Muñoz, “Theoretical pKa calculations with continuum model solvents, alternative protocols to thermodynamic cycles,” Int. J. Quantum Chem. 114, 13501363 (2014).
http://dx.doi.org/10.1002/qua.24699
5.
5.N. M. Garrido, A. J. Queimada, M. Jorge, E. A. Macedo, and I. G. Economou, “1-octanol/water partition coefficients of n-alkanes from molecular simulations of absolute solvation free energies,” J. Chem. Theory Comput. 5, 24362446 (2009).
http://dx.doi.org/10.1021/ct900214y
6.
6.D. S. Palmer, J. Sørensen, B. Schiøtt, and M. V. Fedorov, “Solvent binding analysis and computational alanine scanning of the bovine chymosin–bovine κ-casein complex using molecular integral equation theory,” J. Chem. Theory Comput. 9, 57065717 (2013).
http://dx.doi.org/10.1021/ct400605x
7.
7.N. Hansen and W. F. van Gunsteren, “Practical aspects of free-energy calculations: A review,” J. Chem. Theory Comput. 10, 26322647 (2014).
http://dx.doi.org/10.1021/ct500161f
8.
8.C. Chipot and A. Pohorille, Free Energy Calculations: Theory and Applications in Chemistry and Biology (Springer Science & Business Media, Paris, France, 2007).
9.
9.M. R. Shirts and D. L. Mobley, “An introduction to best practices in free energy calculations,” in Biomolecular Simulations, Methods in Molecular Biology Vol. 924, edited byL. Monticelliand E. Salonen (Humana Press, Totowa, NJ, 2013), pp. 271311.
10.
10.D. Beglov and B. Roux, “Solvation of complex molecules in a polar liquid: An integral equation theory,” J. Chem. Phys. 104, 86788689 (1996).
http://dx.doi.org/10.1063/1.471557
11.
11.D. Beglov and B. Roux, “Numerical-solution of the hypernetted-chain equation for a solute of arbitrary geometry in 3 dimensions,” J. Chem. Phys. 103, 360364 (1995).
http://dx.doi.org/10.1063/1.469602
12.
12.A. Kovalenko and F. Hirata, “Potential of mean force between two molecular ions in a polar molecular solvent: A study by the three-dimensional reference interaction site model,” J. Phys. Chem. B 103, 79427957 (1999).
http://dx.doi.org/10.1021/jp991300+
13.
13.A. Kovalenko and F. Hirata, “Self-consistent description of a metal–water interface by the Kohn–Sham density functional theory and the three-dimensional reference interaction site model,” J. Chem. Phys. 110, 1009510112 (1999).
http://dx.doi.org/10.1063/1.478883
14.
14.Molecular Theory of Solvation, edited by F. Hirata (Kluwer Academic Publishers, Amsterdam, Netherlands, 2003).
15.
15.J.-F. Truchon, B. M. Pettitt, and P. Labute, “A cavity corrected 3D-RISM functional for accurate solvation free energies,” J. Chem. Theory Comput. 10, 934941 (2014).
http://dx.doi.org/10.1021/ct4009359
16.
16.Y. Maruyama, N. Yoshida, H. Tadano, D. Takahashi, M. Sato, and F. Hirata, “Massively parallel implementation of 3D-RISM calculation with volumetric 3D-FFT,” J. Comput. Chem. 35, 13471355 (2014).
http://dx.doi.org/10.1002/jcc.23619
17.
17.V. P. Sergiievskyi and M. V. Fedorov, “3DRISM multigrid algorithm for fast solvation free energy calculations,” J. Chem. Theory Comput. 8, 20622070 (2012).
http://dx.doi.org/10.1021/ct200815v
18.
18.Y. Harano, H. Sato, and F. Hirata, “Solvent effects on a diels-alder reaction in supercritical water: RISM-SCF study,” J. Am. Chem. Soc. 122, 22892293 (2000).
http://dx.doi.org/10.1021/ja991673o
19.
19.T. Imai, M. Kinoshita, and F. Hirata, “Salt effect on stability and solvation structure of peptide: An integral equation study,” Bull. Chem. Soc. Jpn. 73, 11131122 (2000).
http://dx.doi.org/10.1246/bcsj.73.1113
20.
20.M. Kinoshita, Y. Okamoto, and F. Hirata, “Peptide conformations in alcohol and water: Analyses by the reference interaction site model theory,” J. Am. Chem. Soc. 122, 27732779 (2000).
http://dx.doi.org/10.1021/ja993939x
21.
21.D. S. Palmer, A. I. Frolov, E. L. Ratkova, and M. V. Fedorov, “Towards a universal method for calculating hydration free energies: A 3D reference interaction site model with partial molar volume correction,” J. Phys.: Condens. Matter 22, 492101 (2010).
http://dx.doi.org/10.1088/0953-8984/22/49/492101
22.
22.D. S. Palmer, A. I. Frolov, E. L. Ratkova, and M. V. Fedorov, “Toward a universal model to calculate the solvation thermodynamics of druglike molecules: The importance of new experimental databases,” Mol. Pharmaceutics 8, 14231429 (2011).
http://dx.doi.org/10.1021/mp200119r
23.
23.A. I. Frolov, E. L. Ratkova, D. S. Palmer, and M. V. Fedorov, “Hydration thermodynamics using the reference interaction site model: Speed or accuracy?,” J. Phys. Chem. B 115, 60116022 (2011).
http://dx.doi.org/10.1021/jp111271c
24.
24.E. L. Ratkova and M. V. Fedorov, “Combination of RISM and cheminformatics for efficient predictions of hydration free energy of polyfragment molecules: Application to a set of organic pollutants,” J. Chem. Theory Comput. 7, 14501457 (2011).
http://dx.doi.org/10.1021/ct100654h
25.
25.V. P. Sergiievskyi, G. Jeanmairet, M. Levesque, and D. Borgis, “Fast computation of solvation free energies with molecular density functional theory: Thermodynamic-ensemble partial molar volume corrections,” J. Phys. Chem. Lett. 5, 19351942 (2014).
http://dx.doi.org/10.1021/jz500428s
26.
26.A. Kovalenko and F. Hirata, “Potentials of mean force of simple ions in ambient aqueous solution. II. Solvation structure from the three-dimensional reference interaction site model approach, and comparison with simulations,” J. Chem. Phys. 112, 1040310417 (2000).
http://dx.doi.org/10.1063/1.481677
27.
27.A. Kovalenko and F. Hirata, “Potentials of mean force of simple ions in ambient aqueous solution. I. Three-dimensional reference interaction site model approach,” J. Chem. Phys. 112, 1039110402 (2000).
http://dx.doi.org/10.1063/1.481676
28.
28.J.-P. Hansen and I. R. McDonald, Theory of Simple Liquids, 4th ed. (Academic Press, San Diego, CA, 2013).
29.
29.G. N. Chuev and M. V. Fedorov, “Wavelet algorithm for solving integral equations of molecular liquids. A test for the reference interaction site model,” J. Comput. Chem. 25, 13691377 (2004).
http://dx.doi.org/10.1002/jcc.20068
30.
30.S. M. Kast and T. Kloss, “Closed-form expressions of the chemical potential for integral equation closures with certain bridge functions,” J. Chem. Phys. 129, 236101 (2008).
http://dx.doi.org/10.1063/1.3041709
31.
31.M. Kinoshita and M. Harada, “Numerical solution of the RHNC theory for water-like fluids near a macroparticle and a planar wall,” Mol. Phys. 81, 14731488 (1994).
http://dx.doi.org/10.1080/00268979400101011
32.
32.T. Luchko, I. S. Joung, and D. A. Case, “Integral equation theory of biomolecules and electrolytes,” in Innovations in Biomolecular Modeling and Simulations, edited by T. Schlick (Royal Society of Chemistry, London, UK, 2012), Vol. 1, pp. 5186.
33.
33.I. S. Joung, T. Luchko, and D. A. Case, “Simple electrolyte solutions: Comparison of DRISM and molecular dynamics results for alkali halide solutions,” J. Chem. Phys. 138, 044103 (2013).
http://dx.doi.org/10.1063/1.4775743
34.
34.G. M. Giambaşu, T. Luchko, D. Herschlag, D. M. York, and D. A. Case, “Ion counting from explicit-solvent simulations and 3D-RISM,” Biophys. J. 106, 883894 (2014).
http://dx.doi.org/10.1016/j.bpj.2014.01.021
35.
35.J. Heil, D. Tomazic, S. Egbers, and S. M. Kast, “Acidity in DMSO from the embedded cluster integral equation quantum solvation model,” J. Mol. Model. 20, 18 (2014).
http://dx.doi.org/10.1007/s00894-014-2161-4
36.
36.H. Saito, N. Matubayasi, K. Nishikawa, and H. Nagao, “Hydration property of globular proteins: An analysis of solvation free energy by energy representation method,” Chem. Phys. Lett. 497, 218222 (2010).
http://dx.doi.org/10.1016/j.cplett.2010.08.008
37.
37.Y. Karino, M. V. Fedorov, and N. Matubayasi, “End-point calculation of solvation free energy of amino-acid analogs by molecular theories of solution,” Chem. Phys. Lett. 496, 351355 (2010).
http://dx.doi.org/10.1016/j.cplett.2010.07.054
38.
38.Q. H. Du, D. Beglov, and B. Roux, “Solvation free energy of polar and nonpolar molecules in water: An extended interaction site integral equation theory in three dimensions,” J. Phys. Chem. B 104, 796805 (2000).
http://dx.doi.org/10.1021/jp992712l
39.
39.D. L. Mobley, C. I. Bayly, M. D. Cooper, M. R. Shirts, and K. A. Dill, “Small molecule hydration free energies in explicit solvent: An extensive test of fixed-charge atomistic simulations,” J. Chem. Theory Comput. 5, 350358 (2009).
http://dx.doi.org/10.1021/ct800409d
40.
40.G. Landrum, RDKit: Open-source cheminformatics, available from http://www.rdkit.org/. Accession date 2nd March 2015.
41.
41.S. A. Wildman and G. M. Crippen, “Prediction of physicochemical parameters by atomic contributions,” J. Chem. Inf. Comput. Sci. 39, 868873 (1999).
http://dx.doi.org/10.1021/ci990307l
42.
42.C. H. Bennett, “Efficient estimation of free energy differences from Monte Carlo data,” J. Comput. Phys. 22, 245268 (1976).
http://dx.doi.org/10.1016/0021-9991(76)90078-4
43.
43.J. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman, and D. A. Case, “Development and testing of a general amber force field,” J. Comput. Chem. 25, 11571174 (2004).
http://dx.doi.org/10.1002/jcc.20035
44.
44.A. Jakalian, D. B. Jack, and C. I. Bayly, “Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation,” J. Comput. Chem. 23, 16231641 (2002).
http://dx.doi.org/10.1002/jcc.10128
45.
45.W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein, “Comparison of simple potential functions for simulating liquid water,” J. Chem. Phys. 79, 926935 (1983).
http://dx.doi.org/10.1063/1.445869
46.
46.A. C. Chamberlin, C. J. Cramer, and D. G. Truhlar, “Predicting aqueous free energies of solvation as functions of temperature,” J. Phys. Chem. B 110, 56655675 (2006).
http://dx.doi.org/10.1021/jp057264y
47.
47.A. C. Chamberlin, C. J. Cramer, and D. G. Truhlar, “Extension of a temperature-dependent aqueous solvation model to compounds containing nitrogen, fluorine, chlorine, bromine, and sulfur,” J. Phys. Chem. B 112, 30243039 (2008).
http://dx.doi.org/10.1021/jp076682v
48.
48.A. Ben-Naim, “Standard thermodynamics of transfer. Uses and misuses,” J. Phys. Chem. 82, 792803 (1978).
http://dx.doi.org/10.1021/j100496a008
49.
49.A. Ben-Naim and Y. Marcus, “Solvation thermodynamics of nonionic solutes,” J. Chem. Phys. 81, 20162027 (1984).
http://dx.doi.org/10.1063/1.447824
50.
50.See supplementary material at http://dx.doi.org/10.1063/1.4914315 for pdb structures as well as both experimental energies and our results for all compounds.[Supplementary Material]
51.
51.N. M. O’Boyle, M. Banck, C. A. James, C. Morley, T. Vandermeersch, and G. R. Hutchison, “Open Babel: An open chemical toolbox,” J. Cheminf. 3, 33 (2011).
http://dx.doi.org/10.1186/1758-2946-3-33
52.
52.N. M. O’Boyle, C. Morley, and G. R. Hutchison, “Pybel: A python wrapper for the OpenBabel cheminformatics toolkit,” Chem. Cent. J. 2, 15 (2008).
http://dx.doi.org/10.1186/1752-153X-2-5
53.
53.J. L. Banks, H. S. Beard, Y. Cao, A. E. Cho, W. Damm, R. Farid, A. K. Felts, T. A. Halgren, D. T. Mainz, J. R. Maple, R. Murphy, D. M. Philipp, M. P. Repasky, L. Y. Zhang, B. J. Berne, R. A. Friesner, E. Gallicchio, and R. M. Levy, “Integrated modeling program, applied chemical theory (IMPACT),” J. Comput. Chem. 26, 17521780 (2005).
http://dx.doi.org/10.1002/jcc.20292
54.
54.MacroModel, version 10.2, Schrödinger, LLC, New York, NY, 2013, available at http://www.schrodinger.com/kb/609.
55.
55.F. Pérez and B. E. Granger, “IPython: A system for interactive scientific computing,” Comput. Sci. Eng. 9, 2129 (2007).
http://dx.doi.org/10.1109/MCSE.2007.53
56.
56.W. McKinney, “Data structures for statistical computing in python,” in Proceedings of the 9th Python in Science Conference, edited by S. v. d. Waltand J. Millman (2010), pp. 5156 , available at http://conference.scipy.org/proceedings/scipy2010/mckinney.html. Accession date 2 March 2015.
57.
57.S. v. d. Walt, S. C. Colbert, and G. Varoquaux, “The NumPy array: A structure for efficient numerical computation,” Comput. Sci. Eng. 13, 2230 (2011).
http://dx.doi.org/10.1109/MCSE.2011.37
58.
58.J. D. Hunter, “Matplotlib: A 2D graphics environment,” Comput. Sci. Eng. 9, 9095 (2007).
http://dx.doi.org/10.1109/MCSE.2007.55
59.
59.Marvin, ChemAxon Ltd., Budapest, Hungary, 2014.
60.
60.T. Luchko, S. Gusarov, D. R. Roe, C. Simmerling, D. A. Case, J. Tuszynski, and A. Kovalenko, “Three-dimensional molecular theory of solvation coupled with molecular dynamics in amber,” J. Chem. Theory Comput. 6, 607624 (2010).
http://dx.doi.org/10.1021/ct900460m
61.
61.D. Case, T. Darden, T. Cheatham III, C. Simmerling, J. Wang, R. Duke, R. Luo, R. Walker, W. Zhang, K. Merz, B. Roberts, S. Hayik, A. Roitberg, G. Seabra, J. Swails, A. Götz, I. Kolossváry, K. Wong, F. Paesani, J. Vanicek, R. Wolf, J. Liu, X. Wu, S. Brozell, T. Steinbrecher, H. Gohlke, Q. Cai, X. Ye, J. Wang, M.-J. Hsieh, G. Cui, D. Roe, D. Mathews, M. Seetin, R. Salomon-Ferrer, C. Sagui, V. Babin, T. Luchko, S. Gusarov, A. Kovalenko, and P. Kollman, AMBER 13, University of California, San Francisco, 2012.
62.
62.K. Daucik, Revised supplementary release on properties of liquid water at 0.1 MPa, 2011.
63.
63.A. Kovalenko, S. Ten-No, and F. Hirata, “Solution of three-dimensional reference interaction site model and hypernetted chain equations for simple point charge water by modified method of direct inversion in iterative subspace,” J. Comput. Chem. 20, 928936 (1999).
http://dx.doi.org/10.1002/(SICI)1096-987X(19990715)20:9%3C928::AID-JCC4%3E3.0.CO;2-X
64.
64.T. Kloss, J. Heil, and S. M. Kast, “Quantum chemistry in solution by combining 3D integral equation theory with a cluster embedding approach,” J. Phys. Chem. B 112, 43374343 (2008).
http://dx.doi.org/10.1021/jp710680m
65.
65.N. Yoshida and F. Hirata, “A new method to determine electrostatic potential around a macromolecule in solution from molecular wave functions,” J. Comput. Chem. 27, 453462 (2006).
http://dx.doi.org/10.1002/jcc.20356
66.
66.N. Minezawa and S. Kato, “Efficient implementation of three-dimensional reference interaction site model self-consistent-field method: Application to solvatochromic shift calculations,” J. Chem. Phys. 126, 054511 (2007).
http://dx.doi.org/10.1063/1.2431809
67.
67.H. Sato, A. Kovalenko, and F. Hirata, “Self-consistent field, ab initio molecular orbital and three-dimensional reference interaction site model study for solvation effect on carbon monoxide in aqueous solution,” J. Chem. Phys. 112, 94639468 (2000).
http://dx.doi.org/10.1063/1.481564
68.
68.H. Sato, N. Matubayasi, M. Nakahara, and F. Hirata, “Which carbon oxide is more soluble? Ab initio study on carbon monoxide and dioxide in aqueous solution,” Chem. Phys. Lett. 323, 257262 (2000).
http://dx.doi.org/10.1016/S0009-2614(00)00508-X
69.
69.D. Casanova, S. Gusarov, A. Kovalenko, and T. Ziegler, “Evaluation of the SCF combination of KS-DFT and 3D-RISM-KH; solvation effect on conformational equilibria, tautomerization energies, and activation barriers,” J. Chem. Theory Comput. 3, 458476 (2007).
http://dx.doi.org/10.1021/ct6001785
70.
70.F. Hoffgaard, J. Heil, and S. M. Kast, “Three-dimensional RISM integral equation theory for polarizable solute models,” J. Chem. Theory Comput. 9, 47184726 (2013).
http://dx.doi.org/10.1021/ct400699q
71.
71.D.-M. Duh and D. Henderson, “Integral equation theory for Lennard-Jones fluids: The bridge function and applications to pure fluids and mixtures,” J. Chem. Phys. 104, 67426754 (1996).
http://dx.doi.org/10.1063/1.471391
72.
72.N. Matubayasi and M. Nakahara, “Theory of solutions in the energy representation. III. Treatment of the molecular flexibility,” J. Chem. Phys. 119, 96869702 (2003).
http://dx.doi.org/10.1063/1.1613938
73.
73.N. Matubayasi and M. Nakahara, “Theory of solutions in the energy representation. II. Functional for the chemical potential,” J. Chem. Phys. 117, 36053616 (2002).
http://dx.doi.org/10.1063/1.1495850
74.
74.N. Matubayasi and M. Nakahara, “Theory of solutions in the energetic representation. I. Formulation,” J. Chem. Phys. 113, 60706081 (2000).
http://dx.doi.org/10.1063/1.1309013
http://aip.metastore.ingenta.com/content/aip/journal/jcp/142/9/10.1063/1.4914315
Loading
/content/aip/journal/jcp/142/9/10.1063/1.4914315
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/142/9/10.1063/1.4914315
2015-03-06
2016-12-08

Abstract

We present a new model for computing hydration free energies by 3D reference interaction site model (3D-RISM) that uses an appropriate initial state of the system (as suggested by Sergiievskyi ). The new adjustment to 3D-RISM theory significantly improves hydration free energy predictions for various classes of organic molecules at both ambient and non-ambient temperatures. An extensive benchmarking against experimental data shows that the accuracy of the model is comparable to (much more computationally expensive) molecular dynamics simulations. The calculations can be readily performed with a standard 3D-RISM algorithm. In our work, we used an open source package AmberTools; a script to automate the whole procedure is available on the web (https://github.com/MTS-Strathclyde/ISc).

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/142/9/1.4914315.html;jsessionid=gU5mJp-gemTVt40kq4mxdj_O.x-aip-live-02?itemId=/content/aip/journal/jcp/142/9/10.1063/1.4914315&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/142/9/10.1063/1.4914315&pageURL=http://scitation.aip.org/content/aip/journal/jcp/142/9/10.1063/1.4914315'
Right1,Right2,Right3,