Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/143/1/10.1063/1.4923253
1.
1.W. L. Meerts and M. Schmitt, Int. Rev. Phys. Chem. 25, 353 (2006).
http://dx.doi.org/10.1080/01442350600785490
2.
2.W. L. Meerts, C. A. de Lange, A. C. J. Weber, and E. E. Burnell, Encyclopedia of Magnetic Resonance, Analysis of Complex High-Resolution NMR Spectra by Sophisticated Evolutionary Strategies (John Wiley & Sons Ltd., New York, 2013).
http://dx.doi.org/10.1002/9780470034590.emrstm1309
3.
3.W. L. Meerts, C. A. de Lange, A. C. J. Weber, and E. E. Burnell, J. Chem. Phys. 130, 044504 (2009).
http://dx.doi.org/10.1063/1.3061622
4.
4.E. E. Burnell, C. A. de Lange, and W. L. Meerts, “Novel strategies for solving highly complex NMR spectra of solutes in liquid crystals,” Nuclear Magnetic Resonance Spectroscopy of Liquid Crystals, edited by R. Y. Dong (World Scientific, Singapore, 2010), Chap. 1, p. 1.
5.
5.A. C. J. Weber, C. A. de Lange, W. L. Meerts, and E. E. Burnell, Chem. Phys. Lett. 496, 257 (2010).
http://dx.doi.org/10.1016/j.cplett.2010.07.014
6.
6.A. Ostermeier, A. Gawelczyk, and N. Hansen, “Step-size adaptation based on non-local use of selection information,” Lecture Notes in Computer Science: Parallel Problem Solving from Nature (PPSN III) (Springer-Verlag, 1994), pp. 189198.
7.
7.A. C. J. Weber, A. Pizzirusso, L. Muccioli, C. Zannoni, W. L. Meerts, C. A. de Lange, and E. E. Burnell, J. Chem. Phys. 136, 174506 (2012).
http://dx.doi.org/10.1063/1.4705271
8.
8.R. Y. Dong, A. Kohlmeier, M. G. Tamba, G. H. Mehl, and E. E. Burnell, Chem. Phys. Lett. 552, 44 (2012).
http://dx.doi.org/10.1016/j.cplett.2012.09.051
9.
9.J. W. Emsley, M. Lelli, A. Lesage, and G. R. Luckhurst, J. Phys. Chem. B 117, 6547 (2013).
http://dx.doi.org/10.1021/jp4001219
10.
10.A. Pizzirusso, M. B. Di Cicco, G. Tiberio, L. Muccioli, R. Berardi, and C. Zannoni, J. Phys. Chem. B 116, 3760 (2012).
http://dx.doi.org/10.1021/jp3003799
11.
11.A. Pizzirusso, M. E. Di Pietro, G. De Luca, G. Celebre, M. Longeri, L. Muccioli, and C. Zannoni, ChemPhysChem 15, 1356 (2014).
http://dx.doi.org/10.1002/cphc.201400082
12.
12.D. J. Photinos, E. T. Samulski, and H. Toriumi, J. Phys. Chem. 94, 4688 (1990).
http://dx.doi.org/10.1021/j100374a058
13.
13.D. J. Photinos, E. T. Samulski, and H. Toriumi, J. Phys. Chem. 94, 4694 (1990).
http://dx.doi.org/10.1021/j100374a059
14.
14.A. F. Terzis, C.-D. Poon, E. T. Samulski, Z. Luz, R. Poupko, H. Zimmermann, K. Müller, H. Toriumi, and D. J. Photinos, J. Am. Chem. Soc. 118, 2226 (1996).
http://dx.doi.org/10.1021/ja953095r
15.
15.E. E. Burnell and C. A. de Lange, Chem. Rev. 98, 2359 (1998), and references therein.
http://dx.doi.org/10.1021/cr941159v
16.
16.E. E. Burnell and C. A. de Lange, Encyclopedia of Magnetic Resonance, Molecular Hydrogens Dissolved in Liquid Crystals (John Wiley & Sons Ltd., New York, submitted2015).
17.
17.E. E. Burnell, A. C. J. Weber, R. Y. Dong, W. L. Meerts, and C. A. de Lange, J. Chem. Phys. 142, 024904 (2015).
http://dx.doi.org/10.1063/1.4904822
18.
18.G. Tiberio, L. Muccioli, R. Berardi, and C. Zannoni, ChemPhysChem 10, 125 (2009).
http://dx.doi.org/10.1002/cphc.200800231
19.
19.W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz, Jr., D. M. Ferguson, D. C. Spellmeyer, T. Fox, J. W. Caldwell, and P. A. Kollman, J. Am. Chem. Soc. 117, 5179 (1995).
http://dx.doi.org/10.1021/ja00124a002
20.
20.W. L. Jorgensen and J. Tirado-Rives, J. Am. Chem. Soc. 110, 1657 (1988).
http://dx.doi.org/10.1021/ja00214a001
21.
21.J. B. Klauda, B. R. Brooks, A. D. MacKerell, R. M. Venable, and R. W. Pastor, J. Phys. Chem. B 109, 5300 (2005).
http://dx.doi.org/10.1021/jp0468096
22.
22.M. J. Frisch et al., gaussian 09, Revision A.1, Gaussian, Inc., Wallingford, CT, 2009.
23.
23.J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R. D. Skeel, L. Kale, and K. Schulten, J. Comput. Chem. 26, 1781 (2005).
http://dx.doi.org/10.1002/jcc.20289
24.
24.A. C. J. Weber and E. E. Burnell, Chem. Phys. Lett. 506, 196 (2011).
http://dx.doi.org/10.1016/j.cplett.2011.03.025
25.
25.M. Gochin, K. V. Schenker, H. Zimmermann, and A. Pines, J. Am. Chem. Soc. 108, 6813 (1986).
http://dx.doi.org/10.1021/ja00281a064
26.
26.M. Gochin, H. Zimmermann, and A. Pines, Chem. Phys. Lett. 137, 51 (1987).
http://dx.doi.org/10.1016/0009-2614(87)80303-2
27.
27.Myer Bloom, Lucky Hazards My Life in Physics (ISSS Press, Vancouver, 2014).
28.
28.T. Tynkkynen, T. Hassinen, M. Tiainen, P. Soininen, and R. Laatikainen, Magn. Reson. Chem. 50, 598 (2012).
http://dx.doi.org/10.1002/mrc.3847
29.
29.P. Diehl, H. Kellerhals, and E. Lustig, in NMR Basic Principles and Progress (Springer-Verlag, Berlin, 1972), Vol. 6, p. 1.
http://aip.metastore.ingenta.com/content/aip/journal/jcp/143/1/10.1063/1.4923253
Loading
/content/aip/journal/jcp/143/1/10.1063/1.4923253
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/143/1/10.1063/1.4923253
2015-07-07
2016-12-07

Abstract

The NMR spectrum of -hexane orientationally ordered in the nematic liquid crystal ZLI-1132 is analysed using covariance matrix adaptation evolution strategy (CMA-ES). The spectrum contains over 150 000 transitions, with many sharp features appearing above a broad, underlying background signal that results from the plethora of overlapping transitions from the -hexane as well as from the liquid crystal. The CMA-ES requires initial search ranges for NMR spectral parameters, notably the direct dipolar couplings. Several sets of such ranges were utilized, including three from MD simulations and others from the modified chord model that is specifically designed to predict hydrocarbon-chain dipolar couplings. In the end, only inaccurate dipolar couplings from an earlier study utilizing proton-proton double quantum 2D-NMR techniques on partially deuterated -hexane provided the necessary estimates. The precise set of dipolar couplings obtained can now be used to investigate conformational averaging of -hexane in a nematic environment.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/143/1/1.4923253.html;jsessionid=ANer_AcifoGeuM9-4FxluB3h.x-aip-live-02?itemId=/content/aip/journal/jcp/143/1/10.1063/1.4923253&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/143/1/10.1063/1.4923253&pageURL=http://scitation.aip.org/content/aip/journal/jcp/143/1/10.1063/1.4923253'
Right1,Right2,Right3,