Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/143/10/10.1063/1.4926444
1.
1.C. A. Koh, E. D. Sloan, A. K. Sum, and D. T. Wu, “Fundamentals and applications of gas hydrates,” Annu. Rev. Chem. Biomol. Eng. 2, 237257 (2011).
http://dx.doi.org/10.1146/annurev-chembioeng-061010-114152
2.
2.A. K. Sum, D. T. Wu, and K. Yasuoka, MRS Bull. 36, 205 (2011).
http://dx.doi.org/10.1557/mrs.2011.33
3.
3.C. A. Koh, A. K. Sum, and E. D. Sloan, J. Nat. Gas Sci. Eng. 8, 132 (2012).
http://dx.doi.org/10.1016/j.jngse.2012.01.005
4.
4.K. A. Kvenvolden, Rev. Geophys. 31, 173, doi:10.1029/93RG00268 (1993).
http://dx.doi.org/10.1029/93RG00268
5.
5.H. Docherty, A. Galindo, C. Vega, and E. Sanz, J. Chem. Phys. 125, 074510 (2006).
http://dx.doi.org/10.1063/1.2335450
6.
6.J. L. Li, R. Car, C. Tang, and N. S. Wingreen, Proc. Natl. Acad. Sci. U. S. A. 104, 2626 (2007).
http://dx.doi.org/10.1073/pnas.0610945104
7.
7.W. L. Jorgensen, J. Gao, and C. Ravimohan, J. Phys. Chem. 89, 3470 (1985).
http://dx.doi.org/10.1021/j100262a010
8.
8.P. H. K. De Jong, J. E. Wilson, G. W. Neilson, and A. D. Buckingham, Mol. Phys. 91, 99 (1997).
http://dx.doi.org/10.1080/002689797171788
9.
9.H. A. Scheraga, J. Biomol. Struct. Dyn. 16, 447 (1998).
http://dx.doi.org/10.1080/07391102.1998.10508260
10.
10.S. F. Dec, K. E. Bowler, L. L. Stadterman, C. A. Koh, and D. Sloan, J. Am. Chem. Soc. 128, 414 (2006).
http://dx.doi.org/10.1021/ja055283f
11.
11.B. J. Anderson, J. W. Tester, G. P. Borghi, and B. L. Trout, J. Am. Chem. Soc. 127, 17852 (2005).
http://dx.doi.org/10.1021/ja0554965
12.
12.C. Moon, R. W. Hawtin, and P. M. Rodger, Faraday Discuss. 136, 367 (2007).
http://dx.doi.org/10.1039/b618194p
13.
13.H. Jiang, K. D. Jordan, and C. E. Taylor, J. Phys. Chem. B 111, 6486 (2007).
http://dx.doi.org/10.1021/jp068505k
14.
14.H. Jiang, E. M. Myshakin, K. D. Jordan, and R. P. Warzinski, J. Phys. Chem. B 112, 10207 (2008).
http://dx.doi.org/10.1021/jp802942v
15.
15.R. W. Hawtin, D. Quigley, and P. M. Rodger, Phys. Chem. Chem. Phys. 10, 4853 (2008).
http://dx.doi.org/10.1039/b807455k
16.
16.J. F. Zhang, Y. Yang, E. Nakagawa, M. Rivero, S. K. Choi, and P. M. Rodger, J. Phys. Chem. B 112, 10608 (2008).
http://dx.doi.org/10.1021/jp076904p
17.
17.E. M. Myshakin, H. Jiang, R. P. Warzinski, and K. D. Jordan, J. Phys. Chem. A 113, 1913 (2009).
http://dx.doi.org/10.1021/jp807208z
18.
18.M. R. Walsh, C. A. Koh, E. D. Sloan, A. K. Sum, and D. T. Wu, Science 326, 1095 (2009).
http://dx.doi.org/10.1126/science.1174010
19.
19.L. C. Jacobson and V. Molinero, J. Phys. Chem. B 114, 7302 (2010).
http://dx.doi.org/10.1021/jp1013576
20.
20.L. C. Jacobson, W. Hujo, and V. Molinero, J. Am. Chem. Soc. 132, 11806 (2010).
http://dx.doi.org/10.1021/ja1051445
21.
21.S. Liang and P. G. Kusalik, Chem. Phys. Lett. 494, 123 (2010).
http://dx.doi.org/10.1016/j.cplett.2010.05.088
22.
22.L. Jensen, K. Thomsen, N. von Solms, S. Wierzchowski, M. R. Walsh, C. A. Koh, E. D. Sloan, D. T. Wu, and A. K. Sum, J. Phys. Chem. B 114, 5775 (2010).
http://dx.doi.org/10.1021/jp911032q
23.
23.M. R. Walsh, G. T. Beckham, C. A. Koh, E. D. Sloan, D. T. Wu, and A. K. Sum, J. Phys. Chem. C 115, 21241 (2011).
http://dx.doi.org/10.1021/jp206483q
24.
24.S. Liang, D. Rozmanov, and P. G. Kusalik, Phys. Chem. Chem. Phys. 13, 19856 (2011).
http://dx.doi.org/10.1039/c1cp21810g
25.
25.R. Sakamaki, A. K. Sum, T. Narumi, R. Ohmura, and K. Yasuoka, J. Chem. Phys. 134, 144702 (2011).
http://dx.doi.org/10.1063/1.3579480
26.
26.G. J. Guo and P. M. Rodger, J. Phys. Chem. B 117, 6498 (2013).
http://dx.doi.org/10.1021/jp3117215
27.
27.P. Pirzadeh and P. G. Kusalik, J. Am. Chem. Soc. 135, 7278 (2013).
http://dx.doi.org/10.1021/ja400521e
28.
28.T. Ikeda and K. Terakura, J. Chem. Phys. 119, 6784 (2003).
http://dx.doi.org/10.1063/1.1606437
29.
29.A. Lenz and L. Ojamae, J. Phys. Chem. A 115, 6169 (2011).
http://dx.doi.org/10.1021/jp111328v
30.
30.M. Hiratsuka, R. Ohmura, A. K. Sum, and K. Yasuoka, J. Chem. Phys. 136, 044508 (2012).
http://dx.doi.org/10.1063/1.3677231
31.
31.M. Hiratsuka, R. Ohmura, A. K. Sum, and K. Yasuoka, J. Chem. Phys. 137, 144306 (2012).
http://dx.doi.org/10.1063/1.4757914
32.
32.L. Rossato, F. Rossetto, and P. L. Silvestrelli, J. Phys. Chem. B 116, 4552 (2012).
http://dx.doi.org/10.1021/jp300774z
33.
33.Y. Zhao and D. G. Truhlar, J. Chem. Theory Comput. 1, 415 (2005).
http://dx.doi.org/10.1021/ct049851d
34.
34.B. M. Austin, D. Y. Zubarev, and W. A. Lester, Chem. Rev. 112, 263 (2012).
http://dx.doi.org/10.1021/cr2001564
35.
35.W. M. C. Foulkes, L. Mitas, R. J. Needs, and G. Rajagopal, Rev. Mod. Phys. 73, 33 (2001).
http://dx.doi.org/10.1103/RevModPhys.73.33
36.
36.R. J. Needs, M. D. Towler, N. D. Drummond, and P. L. Ríos, J. Phys.: Condens. Matter 22, 023201 (2010).
http://dx.doi.org/10.1088/0953-8984/22/2/023201
37.
37.M. J. Deible, O. Tuguldur, and K. D. Jordan, J. Phys. Chem. B 118, 8257 (2014).
http://dx.doi.org/10.1021/jp501592h
38.
38.S. J. Cox, M. D. Towler, D. Alfè, and A. Michaelides, J. Chem. Phys. 140, 174703 (2014).
http://dx.doi.org/10.1063/1.4871873
39.
39.H. Popkie, H. Kistenmacher, and E. Clementi, J. Chem. Phys. 59, 1325 (1973).
http://dx.doi.org/10.1063/1.1680187
40.
40.O. Matsuoka, E. Clementi, and M. Yoshimine, J. Chem. Phys. 64, 1351 (1976).
http://dx.doi.org/10.1063/1.432402
41.
41.T. Helgaker, P. Jorgensen, and J. Olsen, Molecular Electronic Structure Theory (Wiley, New York, 2000).
42.
42.F. F. Wang, G. Jenness, W. A. Al-Saidi, and K. D. Jordan, J. Chem. Phys. 132, 134303 (2010).
http://dx.doi.org/10.1063/1.3373815
43.
43.L. Goerigk and S. Grimme, Phys. Chem. Chem. Phys. 13, 6670 (2011).
http://dx.doi.org/10.1039/c0cp02984j
44.
44.Z. T. Cao, J. W. Tester, and B. L. Trout, J. Chem. Phys. 115, 2550 (2001).
http://dx.doi.org/10.1063/1.1385369
45.
45.Q. S. Du, P. J. Liu, and J. Deng, J. Chem. Theory Comput. 3, 1665 (2007).
http://dx.doi.org/10.1021/ct700026d
46.
46.Y. Liu, J. J. Zhao, F. Y. Li, and Z. F. Chen, J. Comput. Chem. 34, 121 (2013).
http://dx.doi.org/10.1002/jcc.23112
47.
47.A. Grüneis, M. Marsman, and G. Kresse, J. Chem. Phys. 133, 074107 (2010).
http://dx.doi.org/10.1063/1.3466765
48.
48.L. Maschio, B. Civalleri, P. Ugliengo, and A. Gavezzotti, J. Phys. Chem. A 115, 11179 (2011).
http://dx.doi.org/10.1021/jp203132k
49.
49.F. Goeltl, A. Grüneis, T. Bučko, and J. Hafner, J. Chem. Phys. 137, 114111 (2012).
http://dx.doi.org/10.1063/1.4750979
50.
50.M. Del Ben, J. Hutter, and J. VandeVondele, J. Chem. Theory Comput. 8, 4177 (2012).
http://dx.doi.org/10.1021/ct300531w
51.
51.M. Del Ben, M. Schoenherr, J. Hutter, and J. VandeVondele, J. Phys. Chem. Lett. 4, 3753 (2013).
http://dx.doi.org/10.1021/jz401931f
52.
52.G. H. Booth, A. Grüneis, G. Kresse, and A. Alavi, Nature 493, 365 (2013).
http://dx.doi.org/10.1038/nature11770
53.
53.I. G. Gurtubay and R. J. Needs, J. Chem. Phys. 127, 124306 (2007).
http://dx.doi.org/10.1063/1.2770711
54.
54.J. Ma, D. Alfè, A. Michaelides, and E. Wang, J. Chem. Phys. 130, 154303 (2009).
http://dx.doi.org/10.1063/1.3111035
55.
55.B. Santra et al., Phys. Rev. Lett. 107, 185701 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.185701
56.
56.M. J. Gillan, F. R. Manby, M. D. Towler, and D. Alfè, J. Chem. Phys. 136, 244105 (2012).
http://dx.doi.org/10.1063/1.4730035
57.
57.M. Dubecky, P. Jurečka, R. Derian, P. Hobza, M. Otyepka, and L. Mitas, J. Chem. Theory Comput. 9, 4287 (2013).
http://dx.doi.org/10.1021/ct4006739
58.
58.A. Ambrosetti, D. Alfè, R. A. DiStasio, and A. Tkatchenko, J. Phys. Chem. Lett. 5, 849 (2014).
http://dx.doi.org/10.1021/jz402663k
59.
59.A. Benali, L. Shulenburger, N. A. Romero, J. Kim, and O. A. von Lilienfeld, J. Chem. Theory Comput. 10, 3417 (2014).
http://dx.doi.org/10.1021/ct5003225
60.
60.B. Santra, A. Michaelides, M. Fuchs, A. Tkatchenko, C. Filippi, and M. Scheffler, J. Chem. Phys. 129, 194111 (2008).
http://dx.doi.org/10.1063/1.3012573
61.
61.D. Alfè, A. P. Bartók, G. Csányi, and M. J. Gillan, J. Chem. Phys. 138, 221102 (2013).
http://dx.doi.org/10.1063/1.4810882
62.
62.M. J. Gillan, D. Alfè, A. P. Bartók, and G. Csányi, J. Chem. Phys. 139, 244504 (2013).
http://dx.doi.org/10.1063/1.4852182
63.
63.F. Wang, M. Deible, and K. D. Jordan, J. Phys. Chem. A 117, 7606 (2013).
http://dx.doi.org/10.1021/jp404541c
64.
64.D. Alfè, A. P. Bartók, G. Csányi, and M. J. Gillan, J. Chem. Phys. 141, 014104 (2014).
http://dx.doi.org/10.1063/1.4885440
65.
65.M. A. Morales, J. R. Gergely, J. McMinis, J. M. McMahon, J. Kim, and D. M. Ceperley, J. Chem. Theory Comput. 10, 2355 (2014).
http://dx.doi.org/10.1021/ct500129p
66.
66.P. J. Bygrave, N. L. Allan, and F. R. Manby, J. Chem. Phys. 137, 164102 (2012).
http://dx.doi.org/10.1063/1.4759079
67.
67.M. J. Gillan, D. Alfè, P. J. Bygrave, C. R. Taylor, and F. R. Manby, J. Chem. Phys. 139, 114101 (2013).
http://dx.doi.org/10.1063/1.4820906
68.
68.R. J. Needs, M. D. Towler, N. D. Drummond, and P. López-Ríos, Casino 2.12 User Manual, 2013.
69.
69.L. Mitaš, E. L. Shirley, and D. M. Ceperley, J. Chem. Phys. 95, 3467 (1991).
http://dx.doi.org/10.1063/1.460849
70.
70.J. R. Trail and R. J. Needs, J. Chem. Phys. 122, 014112 (2005).
http://dx.doi.org/10.1063/1.1829049
71.
71.J. R. Trail and R. J. Needs, J. Chem. Phys. 122, 174109 (2005).
http://dx.doi.org/10.1063/1.1888569
72.
72.P. Giannozzi et al., J. Phys.: Condens. Matter 21, 395502 (2009).
http://dx.doi.org/10.1088/0953-8984/21/39/395502
73.
73.D. Alfè and M. J. Gillan, Phys. Rev. B 70, 161101 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.161101
74.
74.H.-J. Werner et al., molpro, version 2012.1, a package of ab initio programs, 2012, see http://www.molpro.net.
75.
75.H. J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, and M. Schutz, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2, 242 (2012).
http://dx.doi.org/10.1002/wcms.82
76.
76.W. Klopper, F. R. Manby, S. Ten-No, and E. F. Valeev, Int. Rev. Phys. Chem. 25, 427 (2006).
http://dx.doi.org/10.1080/01442350600799921
77.
77.T. H. Dunning, J. Chem. Phys. 90, 1007 (1989).
http://dx.doi.org/10.1063/1.456153
78.
78.R. A. Kendall, T. H. Dunning, and R. J. Harrison, J. Chem. Phys. 96, 6796 (1992).
http://dx.doi.org/10.1063/1.462569
79.
79.R. Polly, H. J. Werner, F. R. Manby, and P. J. Knowles, Mol. Phys. 102, 2311 (2004).
http://dx.doi.org/10.1080/0026897042000274801
80.
80.G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.11169
81.
81.R. J. Wheatley and S. L. Price, Mol. Phys. 69, 507 (1990).
http://dx.doi.org/10.1080/00268979000100371
82.
82.A. D. Becke, Phys. Rev. A 38, 3098 (1988).
http://dx.doi.org/10.1103/PhysRevA.38.3098
83.
83.C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).
http://dx.doi.org/10.1103/PhysRevB.37.785
84.
84. Since we use BLYP without correcting for non-local electron correlation (dispersion), an accurate approximation to the real-world system is not necessarily expected. However, our aim here is simply to create a set of CH4-H2O configurations spanning a wide range of C-O separations and molecular orientations.
85.
85. We take the equilibrium O–H bond length and H-O-H angle in the H2O monomer to be 0.958 Å and 104.5°, and the C–H bond-length in the CH4 monomer to be 1.088 Å. The equilibrium geometry of the H2O monomer is restored in two steps: first, the O–H bonds are restored to their equilibrium length, keeping their direction fixed; second, the H-O-H angle is restored to its equilibrium value, keeping the direction of the H-O-H bisector fixed. The position of the O atom is held fixed throughout. For the CH4 monomer, a sequence is adopted for the four H atoms, and the same procedure as for the H2O monomer is applied to the first two H atoms. The lengths and directions of the other two C–H bonds are then adjusted to give the tetrahedral equilibrium geometry.
86.
86.J. L. F. Abascal, E. Sanz, R. G. Fernández, and C. Vega, J. Chem. Phys. 122, 234511 (2005).
http://dx.doi.org/10.1063/1.1931662
87.
87.J. S. Tse, M. L. Klein, and I. R. McDonald, J. Chem. Phys. 81, 6146 (1984).
http://dx.doi.org/10.1063/1.447569
88.
88. For large Rc, the residual error is approximately proportional to the 3-dimensional integral of 1/r6 over the region lying beyond the radius Rc, this integral being .
89.
89.M. J. Gillan, J. Chem. Phys. 141, 224106 (2014).
http://dx.doi.org/10.1063/1.4903240
http://aip.metastore.ingenta.com/content/aip/journal/jcp/143/10/10.1063/1.4926444
Loading
/content/aip/journal/jcp/143/10/10.1063/1.4926444
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/143/10/10.1063/1.4926444
2015-07-09
2016-09-28

Abstract

The quantum Monte Carlo (QMC) technique is used to generate accurate energy benchmarks for methane-water clusters containing a single methanemonomer and up to 20 watermonomers. The benchmarks for each type of cluster are computed for a set of geometries drawn from molecular dynamics simulations. The accuracy of QMC is expected to be comparable with that of coupled-cluster calculations, and this is confirmed by comparisons for the CH-HO dimer. The benchmarks are used to assess the accuracy of the second-order Møller-Plesset (MP2) approximation close to the complete basis-set limit. A recently developed embedded many-body technique is shown to give an efficient procedure for computing basis-set converged MP2 energies for the large clusters. It is found that MP2 values for the methane binding energies and the cohesive energies of the water clusters without methane are in close agreement with the QMC benchmarks, but the agreement is aided by partial cancelation between 2-body and beyond-2-body errors of MP2. The embedding approach allows MP2 to be applied without loss of accuracy to the methane hydrate crystal, and it is shown that the resulting methane binding energy and the cohesive energy of the water lattice agree almost exactly with recently reported QMC values.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/143/10/1.4926444.html;jsessionid=Ul1Domw2iCAu7BUf-FqcaX_A.x-aip-live-03?itemId=/content/aip/journal/jcp/143/10/10.1063/1.4926444&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/143/10/10.1063/1.4926444&pageURL=http://scitation.aip.org/content/aip/journal/jcp/143/10/10.1063/1.4926444'
Right1,Right2,Right3,