Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/143/10/10.1063/1.4929346
1.
1.A. D. Becke, J. Chem. Phys. 98, 1372 (1993).
http://dx.doi.org/10.1063/1.464304
2.
2.A. D. Becke, J. Chem. Phys. 98, 5648 (1993).
http://dx.doi.org/10.1063/1.464913
3.
3.J. Muscat, A. Wander, and N. Harrison, Chem. Phys. Lett. 342, 397 (2001).
http://dx.doi.org/10.1016/S0009-2614(01)00616-9
4.
4.J. Paier, R. Hirschl, M. Marsman, and G. Kresse, J. Chem. Phys. 122, 234102 (2005).
http://dx.doi.org/10.1063/1.1926272
5.
5.J. Paier, M. Marsman, K. Hummer, G. Kresse, I. C. Gerber, and J. G. Ángyán, J. Chem. Phys. 124, 154709 (2006).
http://dx.doi.org/10.1063/1.2187006
6.
6.S. Grimme, J. Comput. Chem. 27, 1787 (2006).
http://dx.doi.org/10.1002/jcc.20495
7.
7.A. Tkatchenko and M. Scheffler, Phys. Rev. Lett. 102, 073005 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.073005
8.
8.A. Tkatchenko, R. A. DiStasio, R. Car, and M. Scheffler, Phys. Rev. Lett. 108, 236402 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.236402
9.
9.S. Grimme, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 1, 211 (2011).
http://dx.doi.org/10.1002/wcms.30
10.
10.M. Dion, H. Rydberg, E. Schröder, D. C. Langreth, and B. I. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.246401
11.
11.D. C. Langreth, M. Dion, H. Rydberg, E. Schroder, P. Hyldgaard, and B. I. Lundqvist, Int. J. Quantum Chem. 101, 599 (2005).
http://dx.doi.org/10.1002/qua.20315
12.
12.D. C. Langreth, B. I. Lundqvist, S. D. Chakarova-Käck, V. R. Cooper, M. Dion, P. Hyldgaard, A. Kelkkanen, J. Kleis, L. Kong, S. Li, P. G. Moses, E. Murray, A. Puzder, H. Rydberg, E. Schroder, and T. Thonhauser, J. Phys.: Condens. Matter 21, 084203 (2009).
http://dx.doi.org/10.1088/0953-8984/21/8/084203
13.
13.O. A. Vydrov and T. Van Voorhis, J. Chem. Phys. 133, 244103 (2010).
http://dx.doi.org/10.1063/1.3521275
14.
14.J. Klimeš and A. Michaelides, J. Chem. Phys. 137, 120901 (2012).
http://dx.doi.org/10.1063/1.4754130
15.
15.R. J. Bartlett and M. Musiał, Rev. Mod. Phys. 79, 291 (2007).
http://dx.doi.org/10.1103/RevModPhys.79.291
16.
16.C. Møller and M. S. Plesset, Phys. Rev. 46, 618 (1934).
http://dx.doi.org/10.1103/PhysRev.46.618
17.
17.M. Marsman, A. Grüneis, J. Paier, and G. Kresse, J. Chem. Phys. 130, 184103 (2009).
http://dx.doi.org/10.1063/1.3126249
18.
18.A. Grüneis, M. Marsman, and G. Kresse, J. Chem. Phys. 133, 074107 (2010).
http://dx.doi.org/10.1063/1.3466765
19.
19.G. H. Booth, A. Grüneis, G. Kresse, and A. Alavi, Nature 493, 365 (2013).
http://dx.doi.org/10.1038/nature11770
20.
20.D. C. Langreth and J. P. Perdew, Phys. Rev. B 15, 2884 (1977).
http://dx.doi.org/10.1103/PhysRevB.15.2884
21.
21.F. Furche, Phys. Rev. B 64, 195120 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.195120
22.
22.T. Miyake, F. Aryasetiawan, T. Kotani, M. van Schilfgaarde, M. Usuda, and K. Terakura, Phys. Rev. B 66, 245103 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.245103
23.
23.A. Marini, P. García-González, and A. Rubio, Phys. Rev. Lett. 96, 136404 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.136404
24.
24.J. Harl and G. Kresse, Phys. Rev. B 77, 045136 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.045136
25.
25.F. Furche, J. Chem. Phys. 129, 114105 (2008).
http://dx.doi.org/10.1063/1.2977789
26.
26.H. Eshuis, J. Yarkony, and F. Furche, J. Chem. Phys. 132, 234114 (2010).
http://dx.doi.org/10.1063/1.3442749
27.
27.H. Eshuis and F. Furche, J. Phys. Chem. Lett. 2, 983 (2011).
http://dx.doi.org/10.1021/jz200238f
28.
28.J. Harl and G. Kresse, Phys. Rev. Lett. 103, 056401 (2010).
http://dx.doi.org/10.1103/PhysRevLett.103.056401
29.
29.J. Harl, L. Schimka, and G. Kresse, Phys. Rev. B 81, 115126 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.115126
30.
30.B. Xiao, J. Sun, A. Ruzsinszky, J. Feng, and J. P. Perdew, Phys. Rev. B 86, 094109 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.094109
31.
31.T. Olsen and K. S. Thygesen, Phys. Rev. B 87, 075111 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.075111
32.
32.L. Schimka, R. Gaudoin, J. Klimeš, M. Marsman, and G. Kresse, Phys. Rev. B 87, 214102 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.214102
33.
33.S. Lebègue, J. Harl, T. Gould, J. G. Ángyán, G. Kresse, and J. F. Dobson, Phys. Rev. Lett. 105, 196401 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.196401
34.
34.T. Olsen, J. Yan, J. J. Mortensen, and K. S. Thygesen, Phys. Rev. Lett. 107, 156401 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.156401
35.
35.F. Mittendorfer, A. Garhofer, J. Redinger, J. Klimeš, J. Harl, and G. Kresse, Phys. Rev. B 84, 201401 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.201401
36.
36.T. Björkman, A. Gulans, A. V. Krasheninnikov, and R. M. Nieminen, Phys. Rev. Lett. 108, 235502 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.235502
37.
37.L. Schimka, J. Harl, A. Stroppa, A. Grüneis, M. Marsman, F. Mittendorfer, and G. Kresse, Nat. Mater. 9, 741 (2010).
http://dx.doi.org/10.1038/nmat2806
38.
38.M. Macher, J. Klimeš, C. Franchini, and G. Kresse, J. Chem. Phys. 140, 084502 (2014).
http://dx.doi.org/10.1063/1.4865748
39.
39.M. Kaltak, J. Klimeš, and G. Kresse, J. Chem. Theory Comput. 10, 2498 (2014).
http://dx.doi.org/10.1021/ct5001268
40.
40.M. Kaltak, J. Klimeš, and G. Kresse, Phys. Rev. B 90, 054115 (2014).
http://dx.doi.org/10.1103/PhysRevB.90.054115
41.
41.M. D. Ben, O. Schütt, T. Wentz, P. Messmer, J. Hutter, and J. VandeVondele, Comput. Phys. Commun. 187, 120 (2015).
http://dx.doi.org/10.1016/j.cpc.2014.10.021
42.
42.A. Grüneis, M. Marsman, J. Harl, L. Schimka, and G. Kresse, J. Chem. Phys. 131, 154115 (2009).
http://dx.doi.org/10.1063/1.3250347
43.
43.J. E. Bates and F. Furche, J. Chem. Phys. 139, 171103 (2013).
http://dx.doi.org/10.1063/1.4827254
44.
44.X. Ren, A. Tkatchenko, P. Rinke, and M. Scheffler, Phys. Rev. Lett. 106, 153003 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.153003
45.
45.X. Ren, P. Rinke, C. Joas, and M. Scheffler, J. Mater. Sci. 47, 7447 (2012).
http://dx.doi.org/10.1007/s10853-012-6570-4
46.
46.J. Paier, X. Ren, P. Rinke, G. E. Scuseria, A. Grüneis, G. Kresse, and M. Scheffler, New J. Phys. 14, 043002 (2012).
http://dx.doi.org/10.1088/1367-2630/14/4/043002
47.
47.X. Ren, P. Rinke, V. Blum, J. Wieferink, A. Tkatchenko, A. Sanfilippo, K. Reuter, and M. Scheffler, New J. Phys. 14, 053020 (2012).
http://dx.doi.org/10.1088/1367-2630/14/5/053020
48.
48.X. Ren, P. Rinke, G. E. Scuseria, and M. Scheffler, Phys. Rev. B 88, 035120 (2013).
http://dx.doi.org/10.1103/physrevb.88.035120
49.
49.T. Olsen and K. S. Thygesen, Phys. Rev. B 86, 081103 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.081103
50.
50.P. Bleiziffer, A. Heßelmann, and A. Görling, J. Chem. Phys. 139, 084113 (2013).
http://dx.doi.org/10.1063/1.4818984
51.
51.J. Klimeš and G. Kresse, J. Chem. Phys. 140, 054516 (2014).
http://dx.doi.org/10.1063/1.4863502
52.
52.A. M. Burow, J. E. Bates, F. Furche, and H. Eshuis, J. Chem. Theory Comput. 10, 180 (2014).
http://dx.doi.org/10.1021/ct4008553
53.
53.J. Rekkedal, S. Coriani, M. F. Iozzi, A. M. Teale, T. Helgaker, and T. B. Pedersen, J. Chem. Phys. 139, 081101 (2013).
http://dx.doi.org/10.1063/1.4819399
54.
54.A. Szabo and N. S. Ostlund, Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory (Dover Publications, New York, USA , 1996).
55.
55.A. Görling and M. Levy, Phys. Rev. A 50, 196 (1994).
http://dx.doi.org/10.1103/PhysRevA.50.196
56.
56.J. Toulouse, W. Zhu, J. G. Angyán, and A. Savin, Phys. Rev. A 82, 032502 (2010).
http://dx.doi.org/10.1103/PhysRevA.82.032502
57.
57.H. van Aggelen, Y. Yang, and W. Yang, J. Chem. Phys. 140, 18A511 (2014).
http://dx.doi.org/10.1063/1.4865816
58.
58.J. Harris and R. O. Jones, J. Phys. F: Met. Phys. 4, 1170 (1974).
http://dx.doi.org/10.1088/0305-4608/4/8/013
59.
59.M. Fuchs, Y.-M. Niquet, X. Gonze, and K. Burke, J. Chem. Phys. 122, 094116 (2005).
http://dx.doi.org/10.1063/1.1858371
60.
60.L. Hedin, Phys. Rev. 139, A796 (1965).
http://dx.doi.org/10.1103/PhysRev.139.A796
61.
61.W. Hanke and L. J. Sham, Phys. Rev. Lett. 43, 387 (1979).
http://dx.doi.org/10.1103/PhysRevLett.43.387
62.
62.W. Hanke and L. J. Sham, Phys. Rev. B 21, 4656 (1980).
http://dx.doi.org/10.1103/PhysRevB.21.4656
63.
63.S. Albrecht, L. Reining, R. Del Sole, and G. Onida, Phys. Rev. Lett. 80, 4510 (1998).
http://dx.doi.org/10.1103/PhysRevLett.80.4510
64.
64.M. Rohlfing and S. G. Louie, Phys. Rev. Lett. 81, 2312 (1998).
http://dx.doi.org/10.1103/PhysRevLett.81.2312
65.
65.Y. M. Niquet, M. Fuchs, and X. Gonze, Phys. Rev. A 68, 032507 (2003).
http://dx.doi.org/10.1103/PhysRevA.68.032507
66.
66.M. Hellgren and U. von Barth, Phys. Rev. B 78, 115107 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.115107
67.
67.A. Stan, N. E. Dahlen, and R. van Leeuwen, J. Chem. Phys. 130, 114105 (2009).
http://dx.doi.org/10.1063/1.3089567
68.
68.L. J. Sham and M. Schlüter, Phys. Rev. Lett. 51, 1888 (1983).
http://dx.doi.org/10.1103/PhysRevLett.51.1888
69.
69.A. Heßelmann and A. Görling, Mol. Phys. 109, 2473 (2011).
http://dx.doi.org/10.1080/00268976.2011.614282
70.
70.L. Z. Stolarczyk and H. J. Monkhorst, Int. J. Quantum Chem. 26, 267 (1984).
http://dx.doi.org/10.1002/qua.560260827
71.
71.J. E. Moussa, J. Chem. Phys. 140, 014107 (2014).
http://dx.doi.org/10.1063/1.4855255
72.
72.G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.11169
73.
73.J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996);
http://dx.doi.org/10.1103/PhysRevLett.77.3865
73.J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 78, 1396 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.1396
74.
74.F. D. Murnaghan, Proc. Natl. Acad. Sci. U. S. A. 30, 244 (1944).
http://dx.doi.org/10.1073/pnas.30.9.244
75.
75.K. Rościszewski, B. Paulus, P. Fulde, and H. Stoll, Phys. Rev. B 62, 5482 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.5482
76.
76.P. Schwerdtfeger, B. Assadollahzadeh, and A. Hermann, Phys. Rev. B 82, 205111 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.205111
77.
77.J. Klimeš, M. Kaltak, and G. Kresse, Phys. Rev. B 90, 075125 (2014).
http://dx.doi.org/10.1103/PhysRevB.90.075125
78.
78.B. Santra, J. Klimeš, D. Alfè, A. Tkatchenko, B. Slater, A. Michaelides, R. Car, and M. Scheffler, Phys. Rev. Lett. 107, 185701 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.185701
79.
79.C. Vega, C. McBride, E. Sanz, and J. L. F. Abascal, Phys. Chem. Chem. Phys. 7, 1450 (2005).
http://dx.doi.org/10.1039/b418934e
80.
80.S. Wen and G. J. O. Beran, J. Chem. Theory Comput. 7, 3733 (2011).
http://dx.doi.org/10.1021/ct200541h
81.
81.Y. Li, D. Lu, H.-V. Nguyen, and G. Galli, J. Phys. Chem. A 114, 1944 (2010).
http://dx.doi.org/10.1021/jp9095425
82.
82.J. Yang, W. Hu, D. Usvyat, D. Matthews, M. Schütz, and G. K. Chan, Science 345(6197), 640 (2014).
http://dx.doi.org/10.1126/science.1254419
83.
83.B. Li, A. Michaelides, and M. Scheffler, Surf. Sci. 602, L135 (2008).
http://dx.doi.org/10.1016/j.susc.2008.09.039
84.
84.L. Schimka, J. Harl, and G. Kresse, J. Chem. Phys. 134, 024116 (2011).
http://dx.doi.org/10.1063/1.3524336
http://aip.metastore.ingenta.com/content/aip/journal/jcp/143/10/10.1063/1.4929346
Loading
/content/aip/journal/jcp/143/10/10.1063/1.4929346
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/143/10/10.1063/1.4929346
2015-08-26
2016-12-05

Abstract

The random phase approximation to the correlation energy often yields highly accurate results for condensed matter systems. However, ways how to improve its accuracy are being sought and here we explore the relevance of singles contributions for prototypical solid state systems. We set out with a derivation of the random phase approximation using the adiabatic connection and fluctuation dissipation theorem, but contrary to the most commonly used derivation, the density is allowed to vary along the coupling constant integral. This yields results closely paralleling standard perturbation theory. We re-derive the standard singles of Görling-Levy perturbation theory [A. Görling and M. Levy, Phys. Rev. A , 196 (1994)], highlight the analogy of our expression to the renormalized singles introduced by Ren and coworkers [Phys. Rev. Lett. , 153003 (2011)], and introduce a new approximation for the singles using the density matrix in the random phase approximation. We discuss the physical relevance and importance of singles alongside illustrative examples of simple weakly bonded systems, including rare gas solids (Ne, Ar, Xe), ice, adsorption of water on NaCl, and solid benzene. The effect of singles on covalently and metallically bonded systems is also discussed.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/143/10/1.4929346.html;jsessionid=PMIPjKI9Lg4kfo_rETC8hu5C.x-aip-live-02?itemId=/content/aip/journal/jcp/143/10/10.1063/1.4929346&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/143/10/10.1063/1.4929346&pageURL=http://scitation.aip.org/content/aip/journal/jcp/143/10/10.1063/1.4929346'
Right1,Right2,Right3,