Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/143/10/10.1063/1.4930539
1.
1.C. A. Wraight and R. K. Clayton, Biochim. Biophys. Acta, Bioenerg. 333, 246 (1974).
http://dx.doi.org/10.1016/0005-2728(74)90009-7
2.
2.R. K. Chain and D. I. Arnon, Proc. Natl. Acad. Sci. U. S. A. 74, 3377 (1977).
http://dx.doi.org/10.1073/pnas.74.8.3377
3.
3.P. Rebentrost, M. Mohseni, I. Kassal, S. Lloyd, and A. Aspuru-Guzik, New J. Phys. 11, 033003 (2009).
http://dx.doi.org/10.1088/1367-2630/11/3/033003
4.
4.M. Mohseni, P. Rebentrost, S. Lloyd, and A. Aspuru-Guzik, J. Chem. Phys. 129, 174106 (2008).
http://dx.doi.org/10.1063/1.3002335
5.
5.G. S. Engel, T. R. Calhoun, E. L. Read, T. K. Ahn, T. Mancal, Y. C. Cheng, R. E. Blankenship, and G. R. Fleming, Nature 446, 782 (2007).
http://dx.doi.org/10.1038/nature05678
6.
6.H. Lee, Y. C. Cheng, and G. R. Fleming, Science 316, 1462 (2007).
http://dx.doi.org/10.1126/science.1142188
7.
7.G. S. Schlau-Cohen, E. De Re, R. J. Cogdell, and G. R. Fleming, J. Phys. Chem. Lett. 3, 2487 (2012).
http://dx.doi.org/10.1021/jz300841u
8.
8.G. S. Schlau-Cohen, A. Ishizaki, T. R. Calhoun, N. S. Ginsberg, M. Ballottari, R. Bassi, and G. R. Fleming, Nat. Chem. 4, 389 (2012).
http://dx.doi.org/10.1038/nchem.1303
9.
9.E. Collini, C. Y. Wong, K. E. Wilk, P. M. Curmi, P. Brumer, and G. D. Scholes, Nature 463, 644 (2010).
http://dx.doi.org/10.1038/nature08811
10.
10.F. D. Fuller, J. Pan, A. Gelzinis, V. Butkus, S. S. Senlik, D. E. Wilcox, C. F. Yocum, L. Valkunas, D. Abramavicius, and J. P. Ogilvie, Nat. Chem. 6, 706 (2014).
http://dx.doi.org/10.1038/nchem.2005
11.
11.E. Romero, R. Augulis, V. I. Novoderezhkin, M. Ferretti, J. Thieme, D. Zigmantas, and R. van Grondelle, Nat. Phys. 10, 677 (2014).
http://dx.doi.org/10.1038/nphys3017
12.
12.A. Ishizaki and G. R. Fleming, Proc. Natl. Acad. Sci. U. S. A. 106, 17255 (2009).
http://dx.doi.org/10.1073/pnas.0908989106
13.
13.G. Panitchayangkoon, D. Hayes, K. A. Fransted, J. R. Caram, E. Harel, J. Wen, R. E. Blankenship, and G. S. Engel, Proc. Natl. Acad. Sci. U. S. A. 107, 12766 (2010).
http://dx.doi.org/10.1073/pnas.1005484107
14.
14.V. Tiwari, W. K. Peters, and D. M. Jonas, Proc. Natl. Acad. Sci. U. S. A. 110, 1203 (2013).
http://dx.doi.org/10.1073/pnas.1211157110
15.
15.K. A. Fransted, J. R. Caram, D. Hayes, and G. S. Engel, J. Chem. Phys. 137, 125101 (2012).
http://dx.doi.org/10.1063/1.4752107
16.
16.N. Christensson, F. Milota, J. Hauer, J. Sperling, O. Bixner, A. Nemeth, and H. F. Kauffmann, J. Phys. Chem. B 115, 5383 (2011).
http://dx.doi.org/10.1021/jp109442b
17.
17.J. M. Womick and A. M. Moran, J. Phys. Chem. B 115, 1347 (2011).
http://dx.doi.org/10.1021/jp106713q
18.
18.A. Chenu and G. D. Scholes, Annu. Rev. Phys. Chem. 66, 69 (2015).
http://dx.doi.org/10.1146/annurev-physchem-040214-121713
19.
19.V. Tiwari, W. K. Peters, and D. M. Jonas, Nat. Chem. 6, 173 (2014).
http://dx.doi.org/10.1038/nchem.1881
20.
20.A. Chenu, N. Christensson, H. F. Kauffmann, and T. Mancal, Sci. Rep. 3, 2029 (2013).
http://dx.doi.org/10.1038/srep02029
21.
21.W. Junge, Annu. Rev. Plant Physiol. 28, 503 (1977).
http://dx.doi.org/10.1146/annurev.pp.28.060177.002443
22.
22.K. M. Pelzer, G. B. Griffin, S. K. Gray, and G. S. Engel, J. Chem. Phys. 136, 164508 (2012).
http://dx.doi.org/10.1063/1.4704591
23.
23.P. D. Dahlberg, A. F. Fidler, J. R. Caram, P. D. Long, and G. S. Engel, J. Phys. Chem. Lett. 4, 3636 (2013).
http://dx.doi.org/10.1021/jz401944q
24.
24.J. Dostal, T. Mancal, R. Augulis, F. Vacha, J. Psencik, and D. Zigmantas, J. Am. Chem. Soc. 134, 11611 (2012).
http://dx.doi.org/10.1021/ja3025627
25.
25.R. Augulis and D. Zigmantas, Opt. Express 19, 13126 (2011).
http://dx.doi.org/10.1364/OE.19.013126
26.
26.D. G. Osborne and K. J. Kubarych, J. Phys. Chem. A 117, 5891 (2013).
http://dx.doi.org/10.1021/jp307854f
27.
27.J. Aagaard and W. R. Sistrom, Photochem. Photobiol. 15, 209 (1972).
http://dx.doi.org/10.1111/j.1751-1097.1972.tb06240.x
28.
28.C. Jungas, J. L. Ranck, J. L. Rigaud, P. Joliot, and A. Vermeglio, EMBO J. 18, 534 (1999).
http://dx.doi.org/10.1093/emboj/18.3.534
29.
29.S. Bahatyrova, R. N. Frese, C. A. Siebert, J. D. Olsen, K. O. van der Werf, R. van Grondelle, R. A. Niederman, P. A. Bullough, C. Otto, and C. N. Hunter, Nature 430, 1058 (2004).
http://dx.doi.org/10.1038/nature02823
30.
30.C. A. Siebert, P. Qian, D. Fotiadis, A. Engel, C. N. Hunter, and P. A. Bullough, EMBO J. 23, 690 (2004).
http://dx.doi.org/10.1038/sj.emboj.7600092
31.
31.V. Sundström, T. Pullerits, and R. van Grondelle, J. Phys. Chem. B 103, 2327 (1999).
http://dx.doi.org/10.1021/jp983722+
32.
32.G. Mcdermott, S. M. Prince, A. A. Freer, A. M. Hawthornthwaitelawless, M. Z. Papiz, R. J. Cogdell, and N. W. Isaacs, Nature 374, 517 (1995).
http://dx.doi.org/10.1038/374517a0
33.
33.M. H. Koolhaus, R. N. Frese, G. J. Fowler, T. S. Bibby, S. Georgakopoulou, G. van der Zwan, C. N. Hunter, and R. van Grondelle, Biochemistry 37, 4693 (1998).
http://dx.doi.org/10.1021/bi973036l
34.
34.V. Novoderezhkin, M. Wendling, and R. van Grondelle, J. Phys. Chem. B 107, 11534 (2003).
http://dx.doi.org/10.1021/jp035432l
35.
35.G. J. Fowler, S. Hess, T. Pullerits, V. Sundstrom, and C. N. Hunter, Biochemistry 36, 11282 (1997).
http://dx.doi.org/10.1021/bi9626315
36.
36.G. R. Fleming and R. van Grondelle, Curr. Opin. Struct. Biol. 7, 738 (1997).
http://dx.doi.org/10.1016/S0959-440X(97)80086-3
37.
37.A. F. Fidler, V. P. Singh, P. D. Long, P. D. Dahlberg, and G. S. Engel, J. Chem. Phys. 139, 155101 (2013).
http://dx.doi.org/10.1063/1.4824637
38.
38.J. K. Trautman, A. P. Shreve, C. A. Violette, H. A. Frank, T. G. Owens, and A. C. Albrecht, Proc. Natl. Acad. Sci. U. S. A. 87, 215 (1990).
http://dx.doi.org/10.1073/pnas.87.1.215
39.
39.H. van der Laan, T. Schmidt, R. W. Visschers, K. J. Visscher, R. van Grondelle, and S. Völker, Chem. Phys. Lett. 170, 231 (1990).
http://dx.doi.org/10.1016/0009-2614(90)87121-7
40.
40.R. Monshouwer, I. O. Dezarate, F. Vanmourik, and R. Vangrondelle, Chem. Phys. Lett. 246, 341 (1995).
http://dx.doi.org/10.1016/0009-2614(95)01104-H
41.
41.S. Hess, E. Akesson, R. J. Cogdell, T. Pullerits, and V. Sundstrom, Biophys. J. 69, 2211 (1995).
http://dx.doi.org/10.1016/S0006-3495(95)80137-2
42.
42.T. H. Joo, Y. W. Jia, J. Y. Yu, D. M. Jonas, and G. R. Fleming, J. Phys. Chem. 100, 2399 (1996).
http://dx.doi.org/10.1021/jp951652q
43.
43.J. L. Herek, N. J. Fraser, T. Pullerits, P. Martinsson, T. Polivka, H. Scheer, R. J. Cogdell, and V. Sundstrom, Biophys. J. 78, 2590 (2000).
http://dx.doi.org/10.1016/S0006-3495(00)76803-2
44.
44.E. Harel and G. S. Engel, Proc. Natl. Acad. Sci. U. S. A. 109, 706 (2012).
http://dx.doi.org/10.1073/pnas.1110312109
45.
45.A. F. Fidler, V. P. Singh, P. D. Long, P. D. Dahlberg, and G. S. Engel, J. Phys. Chem. Lett. 4, 1404 (2013).
http://dx.doi.org/10.1021/jz400438m
46.
46.V. P. Singh, M. Westberg, C. Wang, P. D. Dahlberg, T. Gellen, A. T. Gardiner, R. J. Cogdell, and G. S. Engel, J. Chem. Phys. 142, 212446 (2015).
http://dx.doi.org/10.1063/1.4921324
47.
47.D. M. Jonas, Annu. Rev. Phys. Chem. 54, 425 (2003).
http://dx.doi.org/10.1146/annurev.physchem.54.011002.103907
48.
48.S. Mukamel, Principles of Nonlinear Optical Spectroscopy, Oxford Series in Optical and Imaging Sciences Vol. 6 (Oxford University Press, New York, Oxford, 1995).
49.
49.J. D. Hybl, A. A. Ferro, and D. M. Jonas, J. Chem. Phys. 115, 6606 (2001).
http://dx.doi.org/10.1063/1.1398579
50.
50.M. Cho, H. M. Vaswani, T. Brixner, J. Stenger, and G. R. Fleming, J. Phys. Chem. B 109, 10542 (2005).
http://dx.doi.org/10.1021/jp050788d
51.
51.T. Brixner, T. Mancal, I. V. Stiopkin, and G. R. Fleming, J. Chem. Phys. 121, 4221 (2004).
http://dx.doi.org/10.1063/1.1776112
52.
52.M. L. Cowan, J. P. Ogilvie, and R. J. D. Miller, Chem. Phys. Lett. 386, 184 (2004).
http://dx.doi.org/10.1016/j.cplett.2004.01.027
53.
53.J. D. Hybl, A. W. Albrecht, S. M. G. Faeder, and D. M. Jonas, Chem. Phys. Lett. 297, 307 (1998).
http://dx.doi.org/10.1016/S0009-2614(98)01140-3
54.
54.E. Harel, A. F. Fidler, and G. S. Engel, J. Phys. Chem. A 115, 3787 (2011).
http://dx.doi.org/10.1021/jp107022f
55.
55.E. Harel, P. D. Long, and G. S. Engel, Opt. Lett. 36, 1665 (2011).
http://dx.doi.org/10.1364/OL.36.001665
56.
56.D. Hayes, J. Wen, G. Panitchayangkoon, R. E. Blankenship, and G. S. Engel, Faraday Discuss. 150, 459 (2011).
http://dx.doi.org/10.1039/c0fd00030b
57.
57.H. A. Frank, B. W. Chadwick, J. J. Oh, D. Gust, T. A. Moore, P. A. Liddell, A. L. Moore, L. R. Makings, and R. J. Cogdell, Biochim. Biophys. Acta, Bioenerg. 892, 253 (1987).
http://dx.doi.org/10.1016/0005-2728(87)90229-5
58.
58.V. P. Singh, A. F. Fidler, B. S. Rolczynski, and G. S. Engel, J. Chem. Phys. 139, 084201 (2013).
http://dx.doi.org/10.1063/1.4818808
59.
59.A. F. Fidler, V. P. Singh, P. D. Long, P. D. Dahlberg, and G. S. Engel, Nat. Commun. 5, 3286 (2014).
http://dx.doi.org/10.1038/ncomms4286
60.
60.R. Jimenez, F. vanMourik, J. Y. Yu, and G. R. Fleming, J. Phys. Chem. B 101, 7350 (1997).
http://dx.doi.org/10.1021/jp970299g
61.
61.V. Butkus, D. Zigmantas, L. Valkunas, and D. Abramavicius, Chem. Phys. Lett. 545, 40 (2012).
http://dx.doi.org/10.1016/j.cplett.2012.07.014
62.
62.G. Panitchayangkoon, D. V. Voronine, D. Abramavicius, J. R. Caram, N. H. Lewis, S. Mukamel, and G. S. Engel, Proc. Natl. Acad. Sci. U. S. A. 108, 20908 (2011).
http://dx.doi.org/10.1073/pnas.1105234108
63.
63.J. Seibt and T. Pullerits, J. Chem. Phys. 141, 114106 (2014).
http://dx.doi.org/10.1063/1.4895401
64.
64.See supplementary material at http://dx.doi.org/10.1063/1.4930539 for figures displaying additional spectra as well as a brief discussion of regression and noise.[Supplementary Material]
65.
65. The term “long-lived” is ambiguous. In this manuscript, a long-lived coherence is one that persists on the same time scale as that of energy transfer in the system under study.
66.
66. Room temperature dephasing rates prevent attribution of the coherences by isotopic substitution, but we chose to present the data because they show the reproducibility of the dynamics across samples.
http://aip.metastore.ingenta.com/content/aip/journal/jcp/143/10/10.1063/1.4930539
Loading
/content/aip/journal/jcp/143/10/10.1063/1.4930539
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/143/10/10.1063/1.4930539
2015-09-09
2016-09-25

Abstract

Energy transfer through large disordered antenna networks in photosynthetic organisms can occur with a quantum efficiency of nearly 100%. This energy transfer is facilitated by the electronic structure of the photosynthetic antennae as well as interactions between electronic states and the surrounding environment. Coherences in time-domain spectroscopy provide a fine probe of how a system interacts with its surroundings. In two-dimensional electronic spectroscopy, coherences can appear on both the ground and excited state surfaces revealing detailed information regarding electronic structure, system-bath coupling, energy transfer, and energetic coupling in complex chemical systems. Numerous studies have revealed coherences in isolated photosynthetic pigment-protein complexes, but these coherences have not been observed due to the small amplitude of these signals and the intense scatter from whole cells. Here, we present data acquired using ultrafast video-acquisition gradient-assisted photon echo spectroscopy to observe quantum beating signals from coherences . Experiments were conducted on isolated light harvesting complex II (LH2) from , whole cells of . , and whole cells of grown in 30% deuterated media. A vibronic coherence was observed following laser excitation at ambient temperature between the B850 and the B850 states of LH2 in each of the 3 samples with a lifetime of ∼40-60 fs.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/143/10/1.4930539.html;jsessionid=b-rPWXu-OYI_WIyJg3T3EI7F.x-aip-live-03?itemId=/content/aip/journal/jcp/143/10/10.1063/1.4930539&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/143/10/10.1063/1.4930539&pageURL=http://scitation.aip.org/content/aip/journal/jcp/143/10/10.1063/1.4930539'
Right1,Right2,Right3,