Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.C. A. Wraight and R. K. Clayton, Biochim. Biophys. Acta, Bioenerg. 333, 246 (1974).
2.R. K. Chain and D. I. Arnon, Proc. Natl. Acad. Sci. U. S. A. 74, 3377 (1977).
3.P. Rebentrost, M. Mohseni, I. Kassal, S. Lloyd, and A. Aspuru-Guzik, New J. Phys. 11, 033003 (2009).
4.M. Mohseni, P. Rebentrost, S. Lloyd, and A. Aspuru-Guzik, J. Chem. Phys. 129, 174106 (2008).
5.G. S. Engel, T. R. Calhoun, E. L. Read, T. K. Ahn, T. Mancal, Y. C. Cheng, R. E. Blankenship, and G. R. Fleming, Nature 446, 782 (2007).
6.H. Lee, Y. C. Cheng, and G. R. Fleming, Science 316, 1462 (2007).
7.G. S. Schlau-Cohen, E. De Re, R. J. Cogdell, and G. R. Fleming, J. Phys. Chem. Lett. 3, 2487 (2012).
8.G. S. Schlau-Cohen, A. Ishizaki, T. R. Calhoun, N. S. Ginsberg, M. Ballottari, R. Bassi, and G. R. Fleming, Nat. Chem. 4, 389 (2012).
9.E. Collini, C. Y. Wong, K. E. Wilk, P. M. Curmi, P. Brumer, and G. D. Scholes, Nature 463, 644 (2010).
10.F. D. Fuller, J. Pan, A. Gelzinis, V. Butkus, S. S. Senlik, D. E. Wilcox, C. F. Yocum, L. Valkunas, D. Abramavicius, and J. P. Ogilvie, Nat. Chem. 6, 706 (2014).
11.E. Romero, R. Augulis, V. I. Novoderezhkin, M. Ferretti, J. Thieme, D. Zigmantas, and R. van Grondelle, Nat. Phys. 10, 677 (2014).
12.A. Ishizaki and G. R. Fleming, Proc. Natl. Acad. Sci. U. S. A. 106, 17255 (2009).
13.G. Panitchayangkoon, D. Hayes, K. A. Fransted, J. R. Caram, E. Harel, J. Wen, R. E. Blankenship, and G. S. Engel, Proc. Natl. Acad. Sci. U. S. A. 107, 12766 (2010).
14.V. Tiwari, W. K. Peters, and D. M. Jonas, Proc. Natl. Acad. Sci. U. S. A. 110, 1203 (2013).
15.K. A. Fransted, J. R. Caram, D. Hayes, and G. S. Engel, J. Chem. Phys. 137, 125101 (2012).
16.N. Christensson, F. Milota, J. Hauer, J. Sperling, O. Bixner, A. Nemeth, and H. F. Kauffmann, J. Phys. Chem. B 115, 5383 (2011).
17.J. M. Womick and A. M. Moran, J. Phys. Chem. B 115, 1347 (2011).
18.A. Chenu and G. D. Scholes, Annu. Rev. Phys. Chem. 66, 69 (2015).
19.V. Tiwari, W. K. Peters, and D. M. Jonas, Nat. Chem. 6, 173 (2014).
20.A. Chenu, N. Christensson, H. F. Kauffmann, and T. Mancal, Sci. Rep. 3, 2029 (2013).
21.W. Junge, Annu. Rev. Plant Physiol. 28, 503 (1977).
22.K. M. Pelzer, G. B. Griffin, S. K. Gray, and G. S. Engel, J. Chem. Phys. 136, 164508 (2012).
23.P. D. Dahlberg, A. F. Fidler, J. R. Caram, P. D. Long, and G. S. Engel, J. Phys. Chem. Lett. 4, 3636 (2013).
24.J. Dostal, T. Mancal, R. Augulis, F. Vacha, J. Psencik, and D. Zigmantas, J. Am. Chem. Soc. 134, 11611 (2012).
25.R. Augulis and D. Zigmantas, Opt. Express 19, 13126 (2011).
26.D. G. Osborne and K. J. Kubarych, J. Phys. Chem. A 117, 5891 (2013).
27.J. Aagaard and W. R. Sistrom, Photochem. Photobiol. 15, 209 (1972).
28.C. Jungas, J. L. Ranck, J. L. Rigaud, P. Joliot, and A. Vermeglio, EMBO J. 18, 534 (1999).
29.S. Bahatyrova, R. N. Frese, C. A. Siebert, J. D. Olsen, K. O. van der Werf, R. van Grondelle, R. A. Niederman, P. A. Bullough, C. Otto, and C. N. Hunter, Nature 430, 1058 (2004).
30.C. A. Siebert, P. Qian, D. Fotiadis, A. Engel, C. N. Hunter, and P. A. Bullough, EMBO J. 23, 690 (2004).
31.V. Sundström, T. Pullerits, and R. van Grondelle, J. Phys. Chem. B 103, 2327 (1999).
32.G. Mcdermott, S. M. Prince, A. A. Freer, A. M. Hawthornthwaitelawless, M. Z. Papiz, R. J. Cogdell, and N. W. Isaacs, Nature 374, 517 (1995).
33.M. H. Koolhaus, R. N. Frese, G. J. Fowler, T. S. Bibby, S. Georgakopoulou, G. van der Zwan, C. N. Hunter, and R. van Grondelle, Biochemistry 37, 4693 (1998).
34.V. Novoderezhkin, M. Wendling, and R. van Grondelle, J. Phys. Chem. B 107, 11534 (2003).
35.G. J. Fowler, S. Hess, T. Pullerits, V. Sundstrom, and C. N. Hunter, Biochemistry 36, 11282 (1997).
36.G. R. Fleming and R. van Grondelle, Curr. Opin. Struct. Biol. 7, 738 (1997).
37.A. F. Fidler, V. P. Singh, P. D. Long, P. D. Dahlberg, and G. S. Engel, J. Chem. Phys. 139, 155101 (2013).
38.J. K. Trautman, A. P. Shreve, C. A. Violette, H. A. Frank, T. G. Owens, and A. C. Albrecht, Proc. Natl. Acad. Sci. U. S. A. 87, 215 (1990).
39.H. van der Laan, T. Schmidt, R. W. Visschers, K. J. Visscher, R. van Grondelle, and S. Völker, Chem. Phys. Lett. 170, 231 (1990).
40.R. Monshouwer, I. O. Dezarate, F. Vanmourik, and R. Vangrondelle, Chem. Phys. Lett. 246, 341 (1995).
41.S. Hess, E. Akesson, R. J. Cogdell, T. Pullerits, and V. Sundstrom, Biophys. J. 69, 2211 (1995).
42.T. H. Joo, Y. W. Jia, J. Y. Yu, D. M. Jonas, and G. R. Fleming, J. Phys. Chem. 100, 2399 (1996).
43.J. L. Herek, N. J. Fraser, T. Pullerits, P. Martinsson, T. Polivka, H. Scheer, R. J. Cogdell, and V. Sundstrom, Biophys. J. 78, 2590 (2000).
44.E. Harel and G. S. Engel, Proc. Natl. Acad. Sci. U. S. A. 109, 706 (2012).
45.A. F. Fidler, V. P. Singh, P. D. Long, P. D. Dahlberg, and G. S. Engel, J. Phys. Chem. Lett. 4, 1404 (2013).
46.V. P. Singh, M. Westberg, C. Wang, P. D. Dahlberg, T. Gellen, A. T. Gardiner, R. J. Cogdell, and G. S. Engel, J. Chem. Phys. 142, 212446 (2015).
47.D. M. Jonas, Annu. Rev. Phys. Chem. 54, 425 (2003).
48.S. Mukamel, Principles of Nonlinear Optical Spectroscopy, Oxford Series in Optical and Imaging Sciences Vol. 6 (Oxford University Press, New York, Oxford, 1995).
49.J. D. Hybl, A. A. Ferro, and D. M. Jonas, J. Chem. Phys. 115, 6606 (2001).
50.M. Cho, H. M. Vaswani, T. Brixner, J. Stenger, and G. R. Fleming, J. Phys. Chem. B 109, 10542 (2005).
51.T. Brixner, T. Mancal, I. V. Stiopkin, and G. R. Fleming, J. Chem. Phys. 121, 4221 (2004).
52.M. L. Cowan, J. P. Ogilvie, and R. J. D. Miller, Chem. Phys. Lett. 386, 184 (2004).
53.J. D. Hybl, A. W. Albrecht, S. M. G. Faeder, and D. M. Jonas, Chem. Phys. Lett. 297, 307 (1998).
54.E. Harel, A. F. Fidler, and G. S. Engel, J. Phys. Chem. A 115, 3787 (2011).
55.E. Harel, P. D. Long, and G. S. Engel, Opt. Lett. 36, 1665 (2011).
56.D. Hayes, J. Wen, G. Panitchayangkoon, R. E. Blankenship, and G. S. Engel, Faraday Discuss. 150, 459 (2011).
57.H. A. Frank, B. W. Chadwick, J. J. Oh, D. Gust, T. A. Moore, P. A. Liddell, A. L. Moore, L. R. Makings, and R. J. Cogdell, Biochim. Biophys. Acta, Bioenerg. 892, 253 (1987).
58.V. P. Singh, A. F. Fidler, B. S. Rolczynski, and G. S. Engel, J. Chem. Phys. 139, 084201 (2013).
59.A. F. Fidler, V. P. Singh, P. D. Long, P. D. Dahlberg, and G. S. Engel, Nat. Commun. 5, 3286 (2014).
60.R. Jimenez, F. vanMourik, J. Y. Yu, and G. R. Fleming, J. Phys. Chem. B 101, 7350 (1997).
61.V. Butkus, D. Zigmantas, L. Valkunas, and D. Abramavicius, Chem. Phys. Lett. 545, 40 (2012).
62.G. Panitchayangkoon, D. V. Voronine, D. Abramavicius, J. R. Caram, N. H. Lewis, S. Mukamel, and G. S. Engel, Proc. Natl. Acad. Sci. U. S. A. 108, 20908 (2011).
63.J. Seibt and T. Pullerits, J. Chem. Phys. 141, 114106 (2014).
64.See supplementary material at for figures displaying additional spectra as well as a brief discussion of regression and noise.[Supplementary Material]
65. The term “long-lived” is ambiguous. In this manuscript, a long-lived coherence is one that persists on the same time scale as that of energy transfer in the system under study.
66. Room temperature dephasing rates prevent attribution of the coherences by isotopic substitution, but we chose to present the data because they show the reproducibility of the dynamics across samples.

Data & Media loading...


Article metrics loading...



Energy transfer through large disordered antenna networks in photosynthetic organisms can occur with a quantum efficiency of nearly 100%. This energy transfer is facilitated by the electronic structure of the photosynthetic antennae as well as interactions between electronic states and the surrounding environment. Coherences in time-domain spectroscopy provide a fine probe of how a system interacts with its surroundings. In two-dimensional electronic spectroscopy, coherences can appear on both the ground and excited state surfaces revealing detailed information regarding electronic structure, system-bath coupling, energy transfer, and energetic coupling in complex chemical systems. Numerous studies have revealed coherences in isolated photosynthetic pigment-protein complexes, but these coherences have not been observed due to the small amplitude of these signals and the intense scatter from whole cells. Here, we present data acquired using ultrafast video-acquisition gradient-assisted photon echo spectroscopy to observe quantum beating signals from coherences . Experiments were conducted on isolated light harvesting complex II (LH2) from , whole cells of . , and whole cells of grown in 30% deuterated media. A vibronic coherence was observed following laser excitation at ambient temperature between the B850 and the B850 states of LH2 in each of the 3 samples with a lifetime of ∼40-60 fs.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd