Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/143/10/10.1063/1.4930860
1.
1.T. Wu, H.-J. Werner, and U. Manthe, Science 306(5705), 22272229 (2004).
http://dx.doi.org/10.1126/science.1104085
2.
2.C. Xiao, X. Xu, S. Liu, T. Wang, W. Dong, T. Yang, Z. Sun, D. Dai, X. Xu, D. H. Zhang, and X. Yang, Science 333(6041), 440442 (2011).
http://dx.doi.org/10.1126/science.1205770
3.
3.Y. Zhou and D. H. Zhang, J. Chem. Phys. 141, 194307 (2014).
http://dx.doi.org/10.1063/1.4902005
4.
4.R. Welsch and U. Manthe, J. Chem. Phys. 142, 064309 (2015).
http://dx.doi.org/10.1063/1.4906825
5.
5.A. Fernández-Ramos, J. A. Miller, S. J. Klippenstein, and D. G. Truhlar, Chem. Rev. 106(11), 45184584 (2006).
http://dx.doi.org/10.1021/cr050205w
6.
6.J. Liu and W. H. Miller, J. Chem. Phys. 131(7), 074113 (2009).
http://dx.doi.org/10.1063/1.3202438
7.
7.T. J. H. Hele and S. C. Althorpe, J. Chem. Phys. 138, 084108 (2013).
http://dx.doi.org/10.1063/1.4792697
8.
8.I. R. Craig and D. E. Manolopoulos, J. Chem. Phys. 121, 3368 (2004).
http://dx.doi.org/10.1063/1.1777575
9.
9.B. J. Braams and D. E. Manolopoulos, J. Chem. Phys. 125, 124105 (2006).
http://dx.doi.org/10.1063/1.2357599
10.
10.S. Jang, A. V. Sinitskiy, and G. A. Voth, J. Chem. Phys. 140, 154103 (2014).
http://dx.doi.org/10.1063/1.4870717
11.
11.S. C. Althorpe and T. J. H. Hele, J. Chem. Phys. 139, 084115 (2013).
http://dx.doi.org/10.1063/1.4819076
12.
12.S. Habershon, D. E. Manolopoulos, T. E. Markland, and T. F. Miller, Annu. Rev. Phys. Chem. 64, 387413 (2013).
http://dx.doi.org/10.1146/annurev-physchem-040412-110122
13.
13.T. J. H. Hele, M. J. Willatt, A. Muolo, and S. C. Althorpe, J. Chem. Phys. 142, 191101 (2015).
http://dx.doi.org/10.1063/1.4921234
14.
14.R. P. de Tudela, F. J. Aoiz, Y. V. Suleimanov, and D. E. Manolopoulos, J. Phys. Chem. Lett. 3, 493497 (2012).
http://dx.doi.org/10.1021/jz201702q
15.
15.Y. Li, Y. V. Suleimanov, and H. Guo, J. Phys. Chem. Lett. 5, 700705 (2014).
http://dx.doi.org/10.1021/jz500062q
16.
16.Y. V. Suleimanov, R. Collepardo-Guevara, and D. E. Manolopoulos, J. Chem. Phys. 134, 044131 (2011).
http://dx.doi.org/10.1063/1.3533275
17.
17.J. W. Allen, W. H. Green, Y. Li, H. Guo, and Y. V. Suleimanov, J. Chem. Phys. 138, 221103 (2013).
http://dx.doi.org/10.1063/1.4811329
18.
18.Y. Li, Y. V. Suleimanov, J. Li, W. H. Green, and H. Guo, J. Chem. Phys. 138, 094307 (2013).
http://dx.doi.org/10.1063/1.4793394
19.
19.J. Li, J. Chen, Z. Zhao, D. Xie, D. H. Zhang, and H. Guo, J. Chem. Phys. 142, 204302 (2015).
http://dx.doi.org/10.1063/1.4921412
20.
20.B. Jiang and H. Guo, J. Chem. Phys. 139, 054112 (2013).
http://dx.doi.org/10.1063/1.4817187
21.
21.J. Li, B. Jiang, and H. Guo, J. Chem. Phys. 139, 204103 (2013).
http://dx.doi.org/10.1063/1.4832697
22.
22.B. Jiang and H. Guo, J. Chem. Phys. 141, 034109 (2014).
http://dx.doi.org/10.1063/1.4887363
23.
23.J. Chen, X. Xu, X. Xu, and D. H. Zhang, J. Chem. Phys. 138, 154301 (2013).
http://dx.doi.org/10.1063/1.4801658
24.
24.J. Chen, X. Xu, X. Xu, and D. H. Zhang, J. Chem. Phys. 138, 221104 (2013).
http://dx.doi.org/10.1063/1.4811109
25.
25.X. Xu, J. Chen, and D. H. Zhang, Chin. J. Chem. Phys. 27, 373379 (2014).
http://dx.doi.org/10.1063/1674-0068/27/04/373-379
26.
26.C. H. Bennett, “Molecular dynamics and transition state theory: The simulation of infrequent events,” in Algorithms for Chemical Computations, ACS Symposium Series, edited byR. E. Christoffersen (American Chemical Society, Washington, DC, 1977), Vol. 46, pp. 6397.
27.
27.D. Chandler, J. Chem. Phys. 68, 29592970 (1978).
http://dx.doi.org/10.1063/1.436049
28.
28.I. R. Craig and D. E. Manolopoulos, J. Chem. Phys. 122, 084106 (2005).
http://dx.doi.org/10.1063/1.1850093
29.
29.I. R. Craig and D. E. Manolopoulos, J. Chem. Phys. 123, 034102 (2005).
http://dx.doi.org/10.1063/1.1954769
30.
30.R. Collepardo-Guevara, Y. V. Suleimanov, and D. E. Manolopoulos, J. Chem. Phys. 130, 174713 (2009).
http://dx.doi.org/10.1063/1.3127145
31.
31.R. Collepardo-Guevara, Y. V. Suleimanov, and D. E. Manolopoulos, J. Chem. Phys. 133, 049902 (2010).
http://dx.doi.org/10.1063/1.3464477
32.
32.M. E. Tuckerman, “Path integration via molecular dynamics,” in Quantum Simulations of Complex Many-Body Systems: From Theory to Algorithms, edited by J. Grotendorst, D. Marx, and A. Muramatsu (John von Neumann Institute for Computing, Jülich, 2002), pp. 269298.
33.
33.Y. V. Suleimanov, J. W. Allen, and W. H. Green, Comput. Phys. Commun. 184, 833840 (2013).
http://dx.doi.org/10.1016/j.cpc.2012.10.017
34.
34.See supplementary material at http://dx.doi.org/10.1063/1.4930860 for the molecular-dynamics parameters of the RPMD simulations.[Supplementary Material]
35.
35.D. L. Baulch, C. T. Bowman, C. J. Cobos, R. A. Cox, T. Just, J. A. Kerr, M. J. Pilling, D. Stocker, J. Troe, W. Tsang, R. W. Walker, and J. Warnatz, J. Phys. Chem. Ref. Data 34, 7571397 (2005).
http://dx.doi.org/10.1063/1.1748524
36.
36.J. M. Sutherland, M.-C. Su, and J. V. Michael, Int. J. Chem. Kinet. 33, 669684 (2001).
http://dx.doi.org/10.1002/kin.1064
http://aip.metastore.ingenta.com/content/aip/journal/jcp/143/10/10.1063/1.4930860
Loading
/content/aip/journal/jcp/143/10/10.1063/1.4930860
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/143/10/10.1063/1.4930860
2015-09-11
2016-12-06

Abstract

The ring polymer molecular dynamics (RPMD) calculations are performed to calculate rate constants for the title reaction on the recently constructed potential energy surface based on permutation invariant polynomial (PIP) neural-network (NN) fitting [J. Li , J. Chem. Phys. , 204302 (2015)]. By inspecting convergence, 16 beads are used in computing free-energy barriers at 300 K ≤ ≤ 1000 K, while different numbers of beads are used for transmission coefficients. The present RPMD rates are in excellent agreement with quantum rates computed on the same potential energy surface, as well as with the experimental measurements, demonstrating further that the RPMD is capable of producing accurate rates for polyatomic chemical reactions even at rather low temperatures.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/143/10/1.4930860.html;jsessionid=OIa9P4aex7M7s9ZqpWJsUkG-.x-aip-live-06?itemId=/content/aip/journal/jcp/143/10/10.1063/1.4930860&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/143/10/10.1063/1.4930860&pageURL=http://scitation.aip.org/content/aip/journal/jcp/143/10/10.1063/1.4930860'
Right1,Right2,Right3,