Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/143/11/10.1063/1.4929337
1.
1.J. E. Kirkwood and G. G. Fuller, Langmuir 25(5), 32003206 (2009).
http://dx.doi.org/10.1021/la803736x
2.
2.P. J. Willcox, S. P. Gido, W. Muller, and D. L. Kaplan, Macromolecules 29(15), 51065110 (1996).
http://dx.doi.org/10.1021/ma960588n
3.
3.V. Sharma, M. Crne, J. O. Park, and M. Srinivasarao, Science 325(5939), 449451 (2009).
http://dx.doi.org/10.1126/science.1172051
4.
4.A. F. Miller and A. M. Donald, Biomacromolecules 4(3), 510517 (2003).
http://dx.doi.org/10.1021/bm0200837
5.
5.X. Y. Mu and D. G. Gray, Langmuir 30(31), 92569260 (2014).
http://dx.doi.org/10.1021/la501741r
6.
6.R. Meister, H. Dumoulin, M. A. Halle, and P. Pieranski, J. Phys. II 6(6), 827844 (1996).
http://dx.doi.org/10.1051/jp2:1996214
7.
7.P.-G.de Gennes and J. Prost, The Physics of Liquid Crystals, 2nd ed. (Clarendon Press; Oxford University Press, Oxford, New York, 1995).
8.
8.Y. Bouligand, J. Phys. 35(3), 215236 (1974).
http://dx.doi.org/10.1051/jphys:01974003503021500
9.
9.Y. Bouligand, Tissue Cell 4(2), 189217 (1972).
http://dx.doi.org/10.1016/s0040-8166(72)80042-9
10.
10.A. C. Neville, Biology of Fibrous Composites: Development Beyond the Cell Membrane (Cambridge University Press, New York, NY, USA, 1993).
11.
11.T. L. Tan, D. Wong, and P. Lee, Opt. Express 12(20), 48474854 (2004).
http://dx.doi.org/10.1364/OPEX.12.004847
12.
12.A. R. Parker, Proc. R. Soc. B 262(1365), 349355 (1995).
http://dx.doi.org/10.1098/rspb.1995.0216
13.
13.A. R. Parker and N. Martini, Mater. Today: Proc. 1, 138144 (2014).
http://dx.doi.org/10.1016/j.matpr.2014.09.012
14.
14.S. Vignolini, E. Moyroud, B. J. Glover, and U. Steiner, J. R. Soc., Interface 10(87), 20130394 (2013).
http://dx.doi.org/10.1098/rsif.2013.0394
15.
15.F. Schenk, B. D. Wilts, and D. G. Stavenga, Bioinspiration & Biomimetics 8(4), 045002 (2013).
http://dx.doi.org/10.1088/1748-3182/8/4/045002
16.
16.V. Sharma, M. Crne, J. O. Park, and M. Srinivasarao, Mater. Today: Proc. 1, 161–171 (2014).
http://dx.doi.org/10.1016/j.matpr.2014.09.019
17.
17.P. Vukusic, J. R. Sambles, and C. R. Lawrence, Nature 404(6777), 457 (2000).
http://dx.doi.org/10.1038/35006561
18.
18.K. S. Gould and D. W. Lee, Am. J. Bot. 83(1), 4550 (1996).
http://dx.doi.org/10.2307/2445952
19.
19.R. M. Graham, D. W. Lee, and K. Norstog, Am. J. Bot. 80(2), 198203 (1993).
http://dx.doi.org/10.2307/2445040
20.
20.H. M. Whitney, M. Kolle, P. Andrew, L. Chittka, U. Steiner, and B. J. Glover, Science 323(5910), 130133 (2009).
http://dx.doi.org/10.1126/science.1166256
21.
21.H. Kasukawa, N. Oshima, and R. Fujii, Zool. Sci. 4(2), 243257 (1987).
22.
22.N. F. Hadley, Science 203(4378), 367369 (1979).
http://dx.doi.org/10.1126/science.203.4378.367
23.
23.H. E. Hinton and G. M. Jarman, Nature 238(5360), 160161 (1972).
http://dx.doi.org/10.1038/238160a0
24.
24.F. Liu, B. Q. Dong, X. H. Liu, Y. M. Zheng, and J. Zi, Opt. Express 17(18), 1618316191 (2009).
http://dx.doi.org/10.1364/OE.17.016183
25.
25.D. W. Lee and J. B. Lowry, Nature 254(5495), 5051 (1975).
http://dx.doi.org/10.1038/254050a0
26.
26.N. Herzer, H. Guneysu, D. J. D. Davies, D. Yildirim, A. R. Vaccaro, D. J. Broer, C. W. M. Bastiaansen, and A. P. H. J. Schenning, J. Am. Chem. Soc. 134(18), 76087611 (2012).
http://dx.doi.org/10.1021/ja301845n
27.
27.G. Agez, R. Bitar, and M. Mitov, Soft Matter 7(6), 28412847 (2011).
http://dx.doi.org/10.1039/c0sm00950d
28.
28.S. N. Fernandes, Y. Geng, S. Vignolini, B. J. Glover, A. C. Trindade, J. P. Canejo, P. L. Almeida, P. Brogueira, and M. H. Godinho, Macromol. Chem. Phys. 214(1), 2532 (2013).
http://dx.doi.org/10.1002/macp.201200351
29.
29.O. V. Manyuhina, Eur. Phys. J. E 37, 4852 (2014).
http://dx.doi.org/10.1140/epje/i2014-14048-7
30.
30.A. D. Rey, Soft Matter 3(11), 13491368 (2007).
http://dx.doi.org/10.1039/b704248p
31.
31.P. Rofouie, D. Pasini, and A. D. Rey, Soft Matter 11(6), 11271139 (2015).
http://dx.doi.org/10.1039/C4SM02371D
32.
32.P. Rofouie, D. Pasini, and A. D. Rey, Colloids Interface Sci. Commun. 1, 2326 (2014).
http://dx.doi.org/10.1016/j.colcom.2014.06.003
33.
33.A. G. Cheong and A. D. Rey, J. Chem. Phys. 117(10), 50625071 (2002).
http://dx.doi.org/10.1063/1.1498821
34.
34.A. Rapini and M. Papoular, J. Phys. Colloq. 30, C454 (1969).
http://dx.doi.org/10.1051/jphyscol:1969413
35.
35.D. K. Hwang and A. D. Rey, Liq. Cryst. 32(4), 483497 (2005).
http://dx.doi.org/10.1080/02678290500033950
36.
36.D. K. Hwang and A. D. Rey, J. Chem. Phys. 125(17), 174902 (2006).
http://dx.doi.org/10.1063/1.2361283
37.
37.J. C. Roland, D. Reis, and B. Vian, Tissue Cell 24(3), 335345 (1992).
http://dx.doi.org/10.1016/0040-8166(92)90050-h
38.
38.C. T. Brett and K. Waldron, Physiology and Biochemistry of Plant Cell Walls, 2nd ed. (Chapman & Hall, London, 1996).
39.
39.Y. K. Murugesan and A. D. Rey, Polymers 2(4), 766785 (2010).
http://dx.doi.org/10.3390/polym2040766
40.
40.Y. K. Murugesan and A. D. Rey, J. Non-Newtonian Fluid Mech. 165(1-2), 3244 (2010).
http://dx.doi.org/10.1016/j.jnnfm.2009.08.009
41.
41.A. D. Rey, Soft Matter 6(15), 34023429 (2010).
http://dx.doi.org/10.1039/b921576j
42.
42.B. I. Outram and S. J. Elston, J. Appl. Phys. 113(4), 043103 (2013).
http://dx.doi.org/10.1063/1.4784016
43.
43.P. S. Salter, G. Carbone, S. A. Jewell, S. J. Elston, and P. Raynes, Phys. Rev. E 80(4), 041707 (2009).
http://dx.doi.org/10.1103/PhysRevE.80.041707
44.
44.P. E. Cladis and M. Kleman, Mol. Cryst. Liq. Cryst. 16(1-2), 120 (1972).
http://dx.doi.org/10.1080/15421407208083575
45.
45.A. Saupe, Mol. Cryst. Liq. Cryst. 21(3-4), 211238 (1973).
http://dx.doi.org/10.1080/15421407308083320
46.
46.M. Kléman and O. D. Lavrentovich, Soft Matter Physics: An Introduction (Springer, New York, 2003).
47.
47.A. P. Singh and A. D. Rey, J. Phys. II 5(9), 13211348 (1995).
http://dx.doi.org/10.1051/jp2:1995186
48.
48.R. N. Thurston, J. Appl. Phys. 52(4), 30403052 (1981).
http://dx.doi.org/10.1063/1.329050
49.
49.A. Matsuyama, J. Chem. Phys. 139(17), 174906 (2013).
http://dx.doi.org/10.1063/1.4828940
50.
50.A. Matsuyama, J. Chem. Phys. 141(18), 184903 (2014).
http://dx.doi.org/10.1063/1.4901085
51.
51.L. Salmen, C. R. Biol. 327(9-10), 873880 (2004).
http://dx.doi.org/10.1016/j.crvi.2004.03.010
52.
52.D. J. Broer, G. N. Mol, J. A. M. M. van Haaren, and J. Lub, Adv. Mater. 11(7), 573578 (1999).
http://dx.doi.org/10.1002/(SICI)1521-4095(199905)11:7¡573::AID-ADMA573¿3.0.CO;2-E
53.
53.Z. J. Lu, L. Li, H. Vithana, Y. Q. Jiang, and S. M. Faris, Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 301, 237248 (1997).
http://dx.doi.org/10.1080/10587259708041773
54.
54.D. W. Hoffman and J. W. Cahn, Surf. Sci. 31(1), 368388 (1972).
http://dx.doi.org/10.1016/0039-6028(72)90268-3
55.
55.A. G. Cheong and A. D. Rey, Phys. Rev. E 66(2), 021704 (2002).
http://dx.doi.org/10.1103/PhysRevE.66.021704
56.
56.A. D. Rey, J. Chem. Phys. 120(4), 20102019 (2004).
http://dx.doi.org/10.1063/1.1635357
57.
57.E. Doedel and B. Oldeman, Auto-07p: Continuation and bifurcation software for ordinary differential equations (Concordia University, 2012), http://www.dam.brown.edu/people/sandsted/auto/auto07p.pdf.
58.
58.S. Faetti and V. Palleschi, J. Phys. 46(3), 415424 (1985).
http://dx.doi.org/10.1051/jphys:01985004603041500
59.
59.J. Yoshioka, F. Ito, Y. Suzuki, H. Takahashi, H. Takizawa, and Y. Tabe, Soft Matter 10(32), 58695877 (2014).
http://dx.doi.org/10.1039/C4SM00670D
60.
60.N. R. Bernardino, M. C. F. Pereira, N. M. Silvestre, and M.M.T.da Gama, Soft Matter 10(47), 93999402 (2014).
http://dx.doi.org/10.1039/C4SM01857E
61.
61.B. D. Terris, R. J. Twieg, C. Nguyen, G. Sigaud, and H. T. Nguyen, Europhys. Lett. 19(2), 8590 (1992).
http://dx.doi.org/10.1209/0295-5075/19/2/005
62.
62.M. Mitov, Adv. Mater. 24(47), 62606276 (2012).
http://dx.doi.org/10.1002/adma.201202913
63.
63.O. S. Inc., OptiFDTD technical background and tutorials—Finite difference time domain photonics simulation software, Optiwave, 2011.
http://aip.metastore.ingenta.com/content/aip/journal/jcp/143/11/10.1063/1.4929337
Loading
/content/aip/journal/jcp/143/11/10.1063/1.4929337
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/143/11/10.1063/1.4929337
2015-09-15
2016-05-31

Abstract

Periodic surface nano-wrinkling is found throughout biological liquid crystalline materials, such as collagen films, spider silk gland ducts, exoskeleton of beetles, and flower petals. These surface ultrastructures are responsible for structural colors observed in some beetles and plants that can dynamically respond to external conditions, such as humidity and temperature. In this paper, the formation of the surface undulations is investigated through the interaction of anisotropic interfacial tension, swelling through hydration, and capillarity at free surfaces. Focusing on the cellulosic cholesteric liquid crystal (CCLC) material model, the generalized shape equation for anisotropic interfaces using the Cahn-Hoffman capillarity vector and the Rapini-Papoular anchoring energy are applied to analyze periodic nano-wrinkling in plant-based plywood free surfaces with water-induced cholesteric pitch gradients. Scaling is used to derive the explicit relations between the undulations’ amplitude expressed as a function of the anchoring strength and the spatially varying pitch. The optical responses of the periodic nano-structured surfaces are studied through finite difference time domain simulations indicating that CCLC surfaces with spatially varying pitch reflect light in a wavelength higher than that of a CCLC’s surface with constant pitch. This structural color change is controlled by the pitch gradient through hydration. All these findings provide a foundation to understand structural color phenomena in nature and for the design of optical sensor devices.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/143/11/1.4929337.html;jsessionid=t6l9R5F8gfCdTqhd5NzcZLW7.x-aip-live-06?itemId=/content/aip/journal/jcp/143/11/10.1063/1.4929337&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/143/11/10.1063/1.4929337&pageURL=http://scitation.aip.org/content/aip/journal/jcp/143/11/10.1063/1.4929337'
Right1,Right2,Right3,