Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/143/11/10.1063/1.4931405
1.
1.J. H. E. Griffiths, J. Owen, and I. M. Ward, Nature 173, 439 (1954).
http://dx.doi.org/10.1038/173439a0
2.
2.M. C. M. O’Brien, Proc. R. Soc. London, Ser. A 231, 404 (1955).
http://dx.doi.org/10.1098/rspa.1955.0183
3.
3.R. H. D. Nuttal and J. A. Weil, Solid State Commun. 35, 789 (1980).
http://dx.doi.org/10.1016/0038-1098(80)91075-3
4.
4.R. H. D. Nuttal and J. A. Weil, Can. J. Phys. 59, 1696 (1981).
http://dx.doi.org/10.1139/p81-227
5.
5.R. Schnadt and A. Räuber, Solid State Commun. 9, 159 (1971).
http://dx.doi.org/10.1016/0038-1098(71)90278-X
6.
6.K. Nassau and B. E. Prescott, Phys. Status Solidi A 29, 659 (1975).
http://dx.doi.org/10.1002/pssa.2210290237
7.
7.B. K. Meyer, F. Lohse, J. M. Spaeth, and J. A. Weil, J. Phys. C: Solid State Phys. 17, L31 (1984).
http://dx.doi.org/10.1088/0022-3719/17/1/008
8.
8.O. F. Schirmer, Solid State Commun. 18, 1349 (1976).
http://dx.doi.org/10.1016/0038-1098(76)90975-3
9.
9.A. Continenza and A. Di Pomponio, Phys. Rev. B 54, 13687 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.13687
10.
10.M. Magagnini, P. Gianozzi, and A. Dal Corso, Phys. Rev. B 61, 2621 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.2621
11.
11.J. Lægsgaard and K. Stokbro, Phys. Rev. B 61, 12590 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.12590
12.
12.J. Lægsgaard and K. Stokbro, Phys. Rev. Lett. 86, 2834 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.2834
13.
13.G. Pacchioni, F. Frigoli, D. Ricci, and J. A. Weil, Phys. Rev. B 63, 054102 (2000).
http://dx.doi.org/10.1103/PhysRevB.63.054102
14.
14.A. D. Becke, J. Chem. Phys. 98, 5648 (1993).
http://dx.doi.org/10.1063/1.464913
15.
15.P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch, J. Phys. Chem. 98, 11623 (1994).
http://dx.doi.org/10.1021/j100096a001
16.
16.J. P. Perdew, K. Burke, and M. Ernzerhof, J. Chem. Phys. 105, 9982 (1996).
http://dx.doi.org/10.1063/1.472933
17.
17.J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003);
http://dx.doi.org/10.1063/1.1564060
17.J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 124, 219906 (2006).
http://dx.doi.org/10.1063/1.2204597
18.
18.R. Gillen and J. Robertson, Phys. Rev. B 85, 014117 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.014117
19.
19.X. Solans-Monfort, V. Branchadell, M. Sodupe, M. Sierka, and J. Sauer, J. Chem. Phys. 121, 6034 (2004).
http://dx.doi.org/10.1063/1.1781122
20.
20.A. S. Zyubin, A. M. Mebel, and S. H. Lin, J. Chem. Phys. 119, 11408 (2003).
http://dx.doi.org/10.1063/1.1622660
21.
21.M. Nolan and G. W. Watson, J. Chem. Phys. 125, 144701 (2006).
http://dx.doi.org/10.1063/1.2354468
22.
22.J. To, A. A. Sokol, S. A. French, N. Kaltsoyannis, and C. R. A. Catlow, J. Chem. Phys. 122, 144704 (2005).
http://dx.doi.org/10.1063/1.1880972
23.
23.A. Alkauskas, P. Broqvist, and A. Pasquarello, Phys. Status Solidi B 248, 775 (2011).
http://dx.doi.org/10.1002/pssb.201046195
24.
24.M. A. L. Marques, J. Vidal, M. J. T. Oliveira, L. Reining, and S. Botti, Phys. Rev. B 83, 035119 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.035119
25.
25.L. Hedin, Phys. Rev. 139, A796 (1965).
http://dx.doi.org/10.1103/PhysRev.139.A796
26.
26.J. H. Skone, M. Govoni, and G. Galli, Phys. Rev. B 89, 195112 (2014).
http://dx.doi.org/10.1103/PhysRevB.89.195112
27.
27.M. Gerosa, C. E. Bottani, L. Caramella, G. Onida, C. Di Valentin, and G. Pacchioni, Phys. Rev. B 91, 155201 (2015).
http://dx.doi.org/10.1103/PhysRevB.91.155201
28.
28.R. Dovesi, V. R. Saunders, C. Roetti, R. Orlando, C. M. Zicovich-Wilson, F. Pascale, B. Civalleri, K. Doll, I. J. Harrison, N. M. Bush, P. DArco, and M. Llunell, CRYSTAL09 User’s Manual (University of Torino, Torino, 2009).
29.
29.R. Dovesi, R. Orlando, B. Civalleri, C. Roetti, V. R. Saunders, and C. M. Zicovich-Wilson, Z. Kristallogr. 220, 571 (2005).
http://dx.doi.org/10.1524/zkri.220.5.571.65065
30.
30.R. Nada, C. R. A. Catlow, R. Dovesi, and P. Pisani, Phys. Chem. Miner. 17, 353 (1990).
http://dx.doi.org/10.1007/BF00200131
31.
31.E. Ruiz, M. Llunel, and P. Alemany, J. Solid State Chem. 176, 400 (2003).
http://dx.doi.org/10.1016/S0022-4596(03)00238-X
32.
32.M. Catti, G. Valerio, R. Dovesi, and M. Causá, Phys. Rev. B 49, 14179 (1994).
http://dx.doi.org/10.1103/PhysRevB.49.14179
33.
33.A. D. Becke, J. Chem. Phys. 98, 1372 (1993).
http://dx.doi.org/10.1063/1.464304
34.
34.M. Ferrero, M. Rérat, R. Orlando, R. Dovesi, and R. Dovesi, J. Comput. Chem. 29, 1450 (2008).
http://dx.doi.org/10.1002/jcc.20905
35.
35.M. Ferrero, M. Rérat, R. Orlando, R. Dovesi, and R. Dovesi, J. Chem. Phys. 128, 014100 (2008).
http://dx.doi.org/10.1063/1.2817596
36.
36. The defined thresholds for the maximum and the root-mean-square of the energy gradients (atomic displacements) are 0.000 45 a.u. (0.001 80 a.u.) and 0.000 30 a.u. (0.001 20 a.u.), respectively.28
37.
37.H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).
http://dx.doi.org/10.1103/PhysRevB.13.5188
38.
38.C. G. Van de Walle and J. Neugebauer, J. Appl. Phys. 95, 3851 (2004).
http://dx.doi.org/10.1063/1.1682673
39.
39.S. Lany and A. Zunger, Phys. Rev. B 78, 235104 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.235104
40.
40.F. Gallino, G. Pacchioni, and C. Di Valentin, J. Chem. Phys. 133, 144512 (2010).
http://dx.doi.org/10.1063/1.3491271
41.
41.W. Chen and A. Pasquarello, Phys. Rev. B 88, 115104 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.115104
42.
42.M. Leslie and M. J. Gillan, J. Phys. C 18, 973 (1985).
http://dx.doi.org/10.1088/0022-3719/18/5/005
43.
43.G. Makov and M. C. Payne, Phys. Rev. B 51, 4014 (1995).
http://dx.doi.org/10.1103/PhysRevB.51.4014
44.
44.E. K. Chang, M. Rohlfing, and S. G. Louie, Phys. Rev. Lett. 85, 2613 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.2613
45.
45.Z. A. Weinberg, G. W. Rubloff, and E. Bassous, Phys. Rev. B 19, 3107 (1979).
http://dx.doi.org/10.1103/PhysRevB.19.3107
46.
46.M. d’Avezac, M. Calandra, and F. Mauri, Phys. Rev. B 71, 205210 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.205210
47.
47. The obtained ground state is almost isoenergetic with the one yielded by starting the optimization from the ideal SiO2 structure: the latter is favored by only 6 meV.
48.
48.V. Barone, in Recent Advances in Density Functional Methods, Part I, edited by D. P. Chong (World Scientific Publishing Company, Singapore, 1996), Chap. 8, pp. 287334.
49.
49. The 17O(2) EPR parameters, computed at the sc-PBE0αϵ (B3LYP) level are (in G) Aiso = − 3.6(−15.3), B1 = − 2.9(−31.7), B2 = 1.4(15.7), B3 = 1.5(16.0).
50.
50.C. Gionco, S. Livraghi, S. Maurelli, E. Giamello, S. Tosoni, C. Di Valentin, and G. Pacchioni, Chem. Mater. 27, 3936 (2015).
http://dx.doi.org/10.1021/acs.chemmater.5b00800
51.
51.A. Matsuura, N. Thrupp, X. Gonze, Y. Pouillon, G. Bruant, and G. Onida, Comput. Sci. Eng. 14, 22 (2012).
http://dx.doi.org/10.1109/MCSE.2011.76
http://aip.metastore.ingenta.com/content/aip/journal/jcp/143/11/10.1063/1.4931405
Loading
/content/aip/journal/jcp/143/11/10.1063/1.4931405
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/143/11/10.1063/1.4931405
2015-09-17
2016-12-05

Abstract

We investigate the long-standing problem of hole localization at the Al impurity in quartz SiO, using a relatively recent DFT hybrid-functional method in which the exchange fraction is obtained , based on an analogy with the static many-body COHSEX approximation to the electron self-energy. As the amount of the admixed exact exchange in hybrid functionals has been shown to be determinant for properly capturing the hole localization, this problem constitutes a prototypical benchmark for the accuracy of the method, allowing one to assess to what extent self-interaction effects are avoided. We obtain good results in terms of description of the charge localization and structural distortion around the Al center, improving with respect to the more popular B3LYP hybrid-functional approach. We also discuss the accuracy of computed hyperfine parameters, by comparison with previous calculations based on other self-interaction-free methods, as well as experimental values. We discuss and rationalize the limitations of our approach in computing defect-related excitation energies in low-dielectric-constant insulators.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/143/11/1.4931405.html;jsessionid=jJQibtZiKLtmnRuWeVehYkOA.x-aip-live-06?itemId=/content/aip/journal/jcp/143/11/10.1063/1.4931405&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/143/11/10.1063/1.4931405&pageURL=http://scitation.aip.org/content/aip/journal/jcp/143/11/10.1063/1.4931405'
Right1,Right2,Right3,