Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/143/11/10.1063/1.4931483
1.
1.M. Doi and S. F. Edwards, The Theory of Polymer Dynamics (Clarendon Press, Oxford, 1994).
2.
2.P. J. Flory, Statistical Mechanics of Chain Molecules (Interscience, New York, 1969).
3.
3.K. F. Freed and S. F. Edwards, J. Chem. Phys. 61, 36263633 (1974).
http://dx.doi.org/10.1063/1.1682545
4.
4.P. G. de Gennes, J. Chem. Phys. 55, 572579 (1971).
http://dx.doi.org/10.1063/1.1675789
5.
5.P. G. de Gennes, J. Phys. 36, 1199 (1975).
http://dx.doi.org/10.1051/jphys:0197500360120119900
6.
6.J. F. Douglas, J. Roovers, and K. F. Freed, Macromolecules 23, 41684180 (1990).
http://dx.doi.org/10.1021/ma00220a022
7.
7.M. L. Mansfield and J. F. Douglas, J. Chem. Phys. 139, 044901 (2013).
http://dx.doi.org/10.1063/1.4813020
8.
8.T. G. Fox and P. Flory, J. Appl. Phys. 21, 581591 (1950).
http://dx.doi.org/10.1063/1.1699711
9.
9.T. G. Fox and P. Flory, J. Polym. Sci. 14, 315319 (1954).
http://dx.doi.org/10.1002/pol.1954.120147514
10.
10.R. P. White and J. E. G. Lipson, ACS Macro Lett. 4, 588592 (2015).
http://dx.doi.org/10.1021/acsmacrolett.5b00217
11.
11.V. N. Novikov and E. A. Rössler, Polymer 54, 69876991 (2013).
http://dx.doi.org/10.1016/j.polymer.2013.11.002
12.
12.A. M. Mayes, Macromolecules 27, 3114 (1994).
http://dx.doi.org/10.1021/ma00089a033
13.
13.E. A. Di Marzio and C. M. Guttman, Macromolecules 20, 14031407 (1987).
http://dx.doi.org/10.1021/ma00172a040
14.
14.A. J.-M. Yang and E. A. Di Marzio, Macromolecules 24, 60126018 (1991).
http://dx.doi.org/10.1021/ma00022a017
15.
15.K. Hur, R. G. Winkler, and D. Y. Yoon, Macromolecules 39, 39753977 (2006).
http://dx.doi.org/10.1021/ma060274s
16.
16.A. Kisliuk, Y. Ding, J. Hwang, J. S. Lee, B. K. Annis, M. D. Foster, and A. P. Sokolov, J. Polym. Sci. 40, 24312439 (2002).
http://dx.doi.org/10.1002/polb.10295
17.
17.J. E. L. Roovers and P. M. Toporowski, “Glass transition temperature of star-shaped polystyrenes,” J. Appl. Polym. Sci. 18, 16851691 (1974).
http://dx.doi.org/10.1002/app.1974.070180609
18.
18.J. D. Weeks, D. Chandler, and H. C. Andersen, J. Chem. Phys. 54, 52375247 (1971).
http://dx.doi.org/10.1063/1.1674820
19.
19.J. S. Smith, D. Bedrov, and G. D. Smith, Compos. Sci. Technol. 63, 15991605 (2003).
http://dx.doi.org/10.1016/s0266-3538(03)00061-7
20.
20.A. Chremos and A. Z. Panagiotopoulos, Phys. Rev. Lett. 107, 105503 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.105503
21.
21.S. J. Plimpton, J. Comput. Phys. 117, 1 (1995).
http://dx.doi.org/10.1006/jcph.1995.1039
22.
22.C. Bennemann, W. Paul, K. Binder, and B. Dünweg, Phys. Rev. E 57, 843851 (1998).
http://dx.doi.org/10.1103/PhysRevE.57.843
23.
23.See supplementary material at http://dx.doi.org/10.1063/1.4931483 for the use of the Dobkowski correlation function as well as the methodology for calculatingTg.[Supplementary Material]
24.
24.P. G. Santangelo and C. M. Roland, Macromolecules 31, 45814585 (1998).
http://dx.doi.org/10.1021/ma971823k
25.
25.C. G. Robertson and C. M. Roland, J. Polym. Sci., Part B: Polym. Phys. 42, 26042611 (2004).
http://dx.doi.org/10.1002/polb.20127
26.
26.Y. Ding, A. Kisliuk, and A. P. Sokolov, Macromolecules 37, 161166 (2004).
http://dx.doi.org/10.1021/ma035618i
27.
27.Y. Ding, V. N. Novikov, A. P. Sokolov, A. Cailliaux, C. Dalle-Ferrier, C. Alba-Simionesco, and B. Frick, Macromolecules 37, 92649272 (2004).
http://dx.doi.org/10.1021/ma0492420
28.
28.A. Bormuth, P. Henritzi, and M. Vogel, Macromolecules 43, 89858992 (2010).
http://dx.doi.org/10.1021/ma101721d
29.
29.R. W. Douglas and B. Ellis, Amorphous Materials (Wiley-Interscience, New York, 1972).
30.
30.Z. Dobkowski, Eur. Polym. J. 18, 563567 (1982).
http://dx.doi.org/10.1016/0014-3057(82)90032-5
31.
31.Y. W. Kim, J. T. Park, J. H. Koh, B. R. Min, and J. H. Kim, Polym. Adv. Technol. 19, 944946 (2008).
http://dx.doi.org/10.1002/pat.1081
32.
32.M. Müller, J. P. Wittmer, and M. E. Cates, Phys. Rev. E 53, 5063 (1996).
http://dx.doi.org/10.1103/PhysRevE.53.5063
33.
33.S. Brown and G. Szamel, J. Chem. Phys. 108, 4705 (1998).
http://dx.doi.org/10.1063/1.475927
34.
34.S. Brown, T. Lenczycki, and G. Szamel, Phys. Rev. E 63, 052801 (2001).
http://dx.doi.org/10.1103/PhysRevE.63.052801
35.
35.K. Hur, C. Jeong, R. G. Winkler, N. Lacevic, R. H. Gee, and D. Y. Yoon, Macromolecules 44, 2311 (2011).
http://dx.doi.org/10.1021/ma102659x
36.
36.J. D. Halverson, W. B. Lee, G. S. Grest, A. Y. Grosberg, and K. Kremer, J. Chem. Phys. 134, 204905 (2011).
http://dx.doi.org/10.1063/1.3587138
37.
37.A. Chremos, E. Glynos, and P. F. Green, J. Chem. Phys. 142, 044901 (2015).
http://dx.doi.org/10.1063/1.4906085
38.
38.E. J. Jance van Rensburg, The Statistical Mechanics of Interacting Walks, Polygons, Animals and Vesicles (Oxford University Press, Oxford, 2015).
39.
39.W. Kuhn, Kolloid Z. Polym. 68, 2 (1934).
http://dx.doi.org/10.1007/BF01451681
40.
40.B. E. Eichinger, Macromolecules 10, 671 (1977).
http://dx.doi.org/10.1021/ma60057a035
41.
41.J. Mazur, C. M. Gutman, and F. L. McCrackin, Macromolecules 6, 872 (1973).
http://dx.doi.org/10.1021/ma60036a016
42.
42.M. Bishop, J. H. R. Clarke, A. Rey, and J. J. Freie, J. Chem. Phys. 94, 40094011 (1991).
http://dx.doi.org/10.1063/1.460677
43.
43.A. Forni, F. Ganazzoli, and M. Vacatello, Macromolecules 30, 47374743 (1997).
http://dx.doi.org/10.1021/ma970067f
44.
44.M. L. Mansfield and J. F. Douglas, Condens. Matter Phys. 5, 249274 (2002).
http://dx.doi.org/10.5488/CMP.5.2.249
45.
45.O. Jagodzinski, E. Eisenriegler, and K. Kremer, J. Phys. I (France) 2, 2243 (1992).
http://dx.doi.org/10.1051/jp1:1992279
46.
46.S. Y. Reigh and D. Y. Yoon, ACS Macro Lett. 2, 296300 (2013).
http://dx.doi.org/10.1021/mz300587v
47.
47.J. F. Douglas, Phys. Rev. E 54, 26772689 (1996). The scaling exponentν for polymer without excluded volume isν = 1/4 and it is not equivalent to branched polymers at theirθ-point or having screened excluded volume interactions whereν ≈ 2/5. “Percolation clusters” are branched polymers with screened excluded volume interactions.
http://dx.doi.org/10.1103/PhysRevE.54.2677
48.
48.F. Vargas-Lara and J. F. Douglas, Soft Matter 11, 48884898 (2015).
http://dx.doi.org/10.1039/C5SM00912J
49.
49.A. Rosa and R. Everaers, Phys. Rev. Lett. 112, 118302 (2014).
http://dx.doi.org/10.1103/PhysRevLett.112.118302
50.
50.P. G. de Gennes, Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, 1979).
51.
51.T. Vettorel, A. Y. Grosberg, and K. Kremer, Phys. Biol. 6, 025013 (2009).
http://dx.doi.org/10.1088/1478-3975/6/2/025013
52.
52.T. Sakaue, Phys. Rev. Lett. 106, 167802 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.167802
53.
53.V. Arrghi, S. Gagliardi, A. C. Dagger, J. A. Semlyen, J. S. Higgins, and M. J. Shenton, Macromolecules 37, 80578065 (2004).
http://dx.doi.org/10.1021/ma049565w
http://aip.metastore.ingenta.com/content/aip/journal/jcp/143/11/10.1063/1.4931483
Loading
/content/aip/journal/jcp/143/11/10.1063/1.4931483
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/143/11/10.1063/1.4931483
2015-09-17
2016-12-10

Abstract

Polymer melts with topologically distinct molecular structures, namely, linear chain, ring, and star polymers, are investigated by molecular dynamics simulation. In particular, we determine the mean polymer size and shape, and glass transition temperature for each molecular topology. Both in terms of structure and dynamics, unknotted ring polymers behave similarly to star polymers with ≈ 5–6 star arms, close to a configurational transition point between anisotropic chains to spherically symmetric particle-like structures. These counter-intuitive findings raise fundamental questions regarding the importance of free chain-ends and chain topology in the packing and dynamics of polymeric materials.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/143/11/1.4931483.html;jsessionid=6ashKjlXfMBDpQx6QwAlAAtk.x-aip-live-03?itemId=/content/aip/journal/jcp/143/11/10.1063/1.4931483&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/143/11/10.1063/1.4931483&pageURL=http://scitation.aip.org/content/aip/journal/jcp/143/11/10.1063/1.4931483'
Right1,Right2,Right3,