Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.R. K. Pachauri, M. R. Allen, V. R. Barros, J. Broome, W. Cramer, R. Christ, J. A. Church, L. Clarke, Q. Dahe, P. Dasgupta, N. K. Dubash, O. Edenhofer, I. Elgizouli, C. B. Field, P. Forster, P. Friedlingstein, J. Fuglestvedt, L. Gomez-Echeverri, S. Hallegatte, G. Hegerl, M. Howden, K. Jiang, B. Jimenez Cisneros, V. Kattsov, H. Lee, K. J. Mach, J. Marotzke, M. D. Mastrandrea, L. Meyer, J. Minx, Y. Mulugetta, K. O’Brien, M. Oppenheimer, J. J. Pereira, R. Pichs-Madruga, G.-K. Plattner, H.-O. Pörtner, S. B. Power, B. Preston, N. H. Ravindranath, A. Reisinger, K. Riahi, M. Rusticucci, R. Scholes, K. Seyboth, Y. Sokona, R. Stavins, T. F. Stocker, P. Tschakert, D. van Vuuren, and J.-P. van Ypersele, IPCC, 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by R. Pachauri and L. Meyer (IPCC, Geneva, Switzerland), 151 pp.,
2.D. M. D’Alessandro, B. Smit, and J. R. Long, “Carbon dioxide capture: Prospects for new materials,” Angew. Chem., Int. Ed. 49, 60586082 (2010).
3.A. D. Ellerman, Markets for Clean Air: The U.S. Acid Rain Program (Cambridge University Press, 2000).
4.F. L. Darkrim, P. Malbrunot, and G. P. Tartaglia, “Review of hydrogen storage by adsorption in carbon nanotubes,” Int. J. Hydrogen Energy 27, 193202 (2002).
5.M. J. O’Connell, Carbon Nanotubes: Properties and Applications (CRC Press, 2006).
6.X. Ren, C. Chen, M. Nagatsu, and X. Wang, “Carbon nanotubes as adsorbents in environmental pollution management: A review,” Chem. Eng. J. 170, 395410 (2011).
7.E. J. Bottani and J. M. D. Tascón, Adsorption by Carbons: Novel Carbon Adsorbents (Elsevier, 2011).
8.A. V. Eletskii, “Sorption properties of carbon nanostructures,” Phys.-Usp. 47, 11191154 (2004).
9.L. Liu and S. K. Bhatia, “Molecular simulation of CO2 adsorption in the presence of water in single-walled carbon nanotubes,” J. Phys. Chem. C 117, 1347913491 (2013).
10.X. Peng, D. Cao, and W. Wang, “Adsorption and separation of CH4/CO2/N2/H2/CO mixtures in hexagonally ordered carbon nanopipes CMK-5,” Chem. Eng. Sci. 66, 22662276 (2011).
11.P. Kowalczyk, S. Furmaniak, P. A. Gauden, and A. P. Terzyk, “Optimal single-walled carbon nanotube vessels for short-term reversible storage of carbon dioxide at ambient temperatures,” J. Phys. Chem. C 114, 2146521473 (2010).
12.A. Cao, H. Zhu, X. Zhang, X. Li, D. Ruan, C. Xu, B. Wei, J. Liang, and D. Wu, “Hydrogen storage of dense-aligned carbon nanotubes,” Chem. Phys. Lett. 342, 510514 (2001).
13.D. Zilli, P. R. Bonelli, and A. L. Cukierman, “Effect of alignment on adsorption characteristics of self-oriented multi-walled carbon nanotube arrays,” Nanotechnology 17, 51365141 (2006).
14.S. Agnihotri, J. P. B. Mota, M. Rostam-Abadi, and M. J. Rood, “Structural characterization of single-walled carbon nanotube bundles by experiment and molecular simulation,” Langmuir 21, 896904 (2005).
15.F. J. A. L. Cruz, I. A. A. C. Esteves, and J. P. B. Mota, “Adsorption of light alkanes and alkenes onto single-walled carbon nanotube bundles: Langmuirian analysis and molecular simulations,” Colloids Surf., A 357, 4352 (2010).
16.W. Shi and J. Johnson, “Gas adsorption on heterogeneous single-walled carbon nanotube bundles,” Phys. Rev. Lett. 91, 015504 (2003).
17.S. Agnihotri, J. P. B. Mota, M. Rostam-Abadi, and M. J. Rood, “Adsorption site analysis of impurity embedded single-walled carbon nanotube bundles,” Carbon 44, 23762383 (2006).
18.F. J. A. L. Cruz, I. A. A. C. Esteves, S. Agnihotri, and J. P. B. Mota, “Adsorption equilibria of light organics on single-walled carbon nanotube heterogeneous bundles: Thermodynamical aspects,” J. Phys. Chem. C 115, 26222629 (2011).
19.J. J. Cannon, T. J. H. Vlugt, D. Dubbeldam, S. Maruyama, and J. Shiomi, “Simulation study on the adsorption properties of linear alkanes on closed nanotube bundles,” J. Phys. Chem. B 116, 98129819 (2012).
20.F. Cruz and J. Mota, “Thermodynamics of adsorption of light alkanes and alkenes in single-walled carbon nanotube bundles,” Phys. Rev. B 79, 165426 (2009).
21.M. Rahimi, J. K. Singh, D. J. Babu, J. J. Schneider, and F. Müller-Plathe, “Understanding carbon dioxide adsorption in carbon nanotube arrays: Molecular simulation and adsorption measurements,” J. Phys. Chem. C 117, 1349213501 (2013).
22.D. J. Babu, M. Lange, G. Cherkashinin, A. Issanin, R. Staudt, and J. J. Schneider, “Gas adsorption studies of CO2 and N2 in spatially aligned double-walled carbon nanotube arrays,” Carbon 61, 616623 (2013).
23.R. Joshi, J. Engstler, L. Houben, M. B. Sadan, A. Weidenkaff, P. Mandaliev, A. Issanin, and J. J. Schneider, “Catalyst composition, morphology and reaction pathway in the growth of ‘super-long’ carbon nanotubes,” ChemCatChem 2, 10691073 (2010).
24.J. G. Harris and K. H. Yung, “Carbon dioxide’s liquid-vapor coexistence curve and critical properties as predicted by a simple molecular model,” J. Phys. Chem. 99, 1202112024 (1995).
25.M. H. Ketko, G. Kamath, and J. J. Potoff, “Development of an optimized intermolecular potential for sulfur dioxide,” J. Phys. Chem. B 115, 49494954 (2011).
26.W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz, D. M. Ferguson, D. C. Spellmeyer, T. Fox, J. W. Caldwell, and P. A. Kollman, “A second generation force field for the simulation of proteins, nucleic acids, and organic molecules,” J. Am. Chem. Soc. 117, 51795197 (1995).
27.U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, and L. G. Pedersen, “A smooth particle mesh Ewald method,” J. Chem. Phys. 103, 8577 (1995).
28.M. L. Greenfield and D. N. Theodorou, “Geometric analysis of diffusion pathways in glassy and melt atactic polypropylene,” Macromolecules 26, 54615472 (1993).
29.J. Jiang and S. I. Sandler, “Separation of CO2 and N2 by adsorption in C168 schwarzite: A combination of quantum mechanics and molecular simulation study,” J. Am. Chem. Soc. 127, 1198911997 (2005).
30.R. Babarao, Z. Hu, J. Jiang, S. Chempath, and S. I. Sandler, “Storage and separation of CO2 and CH4 in silicalite, C168 schwarzite, and IRMOF-1: A comparative study from Monte Carlo simulation,” Langmuir 23, 659666 (2007).
31.D. J. Babu, S. Yadav, T. Heinlein, G. Cherkashinin, and J. J. Schneider, “Carbon dioxide plasma as a versatile medium for purification and functionalization of vertically aligned carbon nanotubes,” J. Phys. Chem. C 118, 1202812034 (2014).
32.D. J. Babu, S. N. Varanakkottu, A. Eifert, D. de Koning, G. Cherkashinin, S. Hardt, and J. J. Schneider, “Inscribing wettability gradients onto superhydrophobic carbon nanotube surfaces,” Adv. Mater. Interfaces 1, 1300049 (2014).
33.T. Yamada, T. Namai, K. Hata, D. N. Futaba, K. Mizuno, J. Fan, M. Yudasaka, M. Yumura, and S. Iijima, “Size-selective growth of double-walled carbon nanotube forests from engineered iron catalysts,” Nat. Nanotechnol. 1, 131136 (2006).
34.B. Zhao, D. N. Futaba, S. Yasuda, M. Akoshima, T. Yamada, and K. Hata, “Exploring advantages of diverse carbon nanotube forests with tailored structures synthesized by supergrowth from engineered catalysts,” ACS Nano 3, 108114 (2009).
35.M. De Volder and A. J. Hart, “Engineering hierarchical nanostructures by elastocapillary self-assembly,” Angew. Chem., Int. Ed. 52, 24122425 (2013).
36.D. N. Futaba, K. Hata, T. Yamada, T. Hiraoka, Y. Hayamizu, Y. Kakudate, O. Tanaike, H. Hatori, M. Yumura, and S. Iijima, “Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes,” Nat. Mater. 5, 987994 (2006).
37.H.-J. Butt, K. Graf, and M. Kappl, Physics and Chemistry of Interfaces (John Wiley & Sons, 2006).
38.I. Langmuir, “The adsorption of gases on plane surfaces of glass, mica and platinum,” J. Am. Chem. Soc. 40, 13611403 (1918).
39.H. Freundlich, Kapillarchemie (Akademische Verlagsgesellschaft, Wiesbaden, Germany, 1909).
40.See supplementary material at for the simulation data, best, and worst fits of Langmuir and Freundlich of excess adsorption isotherms of CO2 in double-walled carbon nanotube arrays.[Supplementary Material]

Data & Media loading...


Article metrics loading...



Grand-canonical Monte Carlo simulations and adsorption experiments are combined to find the optimized carbon nanotube (CNT) arrays for gas adsorption at low pressures and 303 K. Bundles of 3D aligned double-walled carbon nanotube (DWCNT) with inner diameter of 8 nm and different intertube distances were made experimentally. The experimental results show that decreasing intertube distance leads to a significant enhancement in carbon-dioxide (CO) adsorption capacity at 1 bar. The molecular simulation study on CO adsorption onto bundles of 3D aligned DWCNT with inner diameters of 1, 3, and 8 nm and intertube distance of 0-15 nm shows that the intertube distance plays a more important role than the CNT diameter. The simulation results show that decreasing the intertube distance up to 1 nm increases the excess adsorption generally in all the studied systems at pressures 0 < < 14 bars (the increase can be up to ∼40% depending on the system and pressure). This is in agreement with the experimental result. Further reduction in intertube distance leads to a decrease in the excess adsorption in the pressure range 9 < < 14 bars. However, at lower pressure, 0 < < 9 bars, intertube distance of 0.5 nm is found to have the highest excess adsorption. This result is indifferent to tube diameter. Furthermore, molecular simulations are conducted to obtain the optimal parameters, for the DWCNT bundle, for SO adsorption, which are similar to those observed for CO in the pressure range 0 < < 3 bars.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd