Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/143/12/10.1063/1.4930918
1.
1.K. F. Freed, Renormalization Group Theory of Macromolecules (John Wiley & Sons, New York, 1987).
2.
2.P.-G. de Gennes, Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, New York, 1979), p. 38.
3.
3.J. F. Douglas and K. F. Freed, Macromolecules 27, 60886099 (1994).
http://dx.doi.org/10.1021/ma00099a022
4.
4.S.-Q. Wang, J. F. Douglas, and K. F. Freed, J. Chem. Phys. 87, 1346 (1984).
http://dx.doi.org/10.1063/1.453316
5.
5.M. L. Mansfield and J. F. Douglas, Phys. Rev. E 81, 021803 (2010).
http://dx.doi.org/10.1103/PhysRevE.81.021803
6.
6.M. L. Mansfield, J. F. Douglas, and E. J. Garboczi, Phys. Rev. E 64, 061401 (2001).
http://dx.doi.org/10.1103/PhysRevE.64.061401
7.
7.M. L. Mansfield and J. F. Douglas, Condens. Matter Phys. 5, 249 (2002).
http://dx.doi.org/10.5488/CMP.5.2.249
8.
8.E.-H. Kang, M. L. Mansfield, and J. F. Douglas, Phys. Rev. E 69, 031918 (2004).
http://dx.doi.org/10.1103/PhysRevE.69.031918
9.
9.M. L. Mansfield, J. F. Douglas, S. Irfan, and E.-H. Kang, Macromolecules 40, 25752589 (2007).
http://dx.doi.org/10.1021/ma061069f
10.
10.M. L. Mansfield and J. F. Douglas, Phys. Rev. E 78, 046712 (2008).
http://dx.doi.org/10.1103/PhysRevE.78.046712
11.
11.M. L. Mansfield and J. F. Douglas, Soft Matter 9, 89148922 (2013).
http://dx.doi.org/10.1039/c3sm51187a
12.
12.M. L. Mansfield and J. F. Douglas, J. Chem. Phys. 139, 044901 (2013).
http://dx.doi.org/10.1063/1.4813020
13.
13.J. B. Hubbard and J. F. Douglas, Phys. Rev. E 47, R2983R2986 (1993).
http://dx.doi.org/10.1103/PhysRevE.47.R2983
14.
14.B. H. Zimm, Macromolecules 13, 592602 (1980).
http://dx.doi.org/10.1021/ma60075a022
15.
15.A. Dondos and G. Staikos, Colloid Polym. Sci. 273, 626632 (1995).
http://dx.doi.org/10.1007/BF00652254
16.
16.D. E. Smith, T. T. Perkins, and S. Chu, Macromolecules 29, 13721373 (1996).
http://dx.doi.org/10.1021/ma951455p
17.
17.R. M. Robertson, S. Laib, and D. E. Smith, Proc. Natl. Acad. Sci. U. S. A. 103, 73107314 (2006).
http://dx.doi.org/10.1073/pnas.0601903103
18.
18.M. Nepal, A. Yaniv, E. Shafran, and O. Krichevsky, Phys. Rev. Lett. 110, 058102 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.058102
19.
19.P. J. Flory, in Statistical Mechanics of Chain Molecules (Wiley, New York, 1969), Chap. II.
20.
20.H. Morawetz, in Macromolecules in Solution, 2nd ed. (Wiley, New York, 1975), Chap. VI.
21.
21.X. Qiu, K. Andresen, L. W. Kwok, J. S. Lamb, H. Y. Park, and L. Pollack, Phys. Rev. Lett. 99, 038104 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.038104
22.
22.E. Shafran, A. Yaniv, and O. Krichevsky, Phys. Rev. Lett. 104, 128101 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.128101
23.
23.D. Bracha, E. Karzbrun, G. Shemer, P. A. Pincus, and R. H. Bar-Ziv, Proc. Natl. Acad. Sci. U. S. A. 110, 45344538 (2013).
http://dx.doi.org/10.1073/pnas.1220076110
24.
24.D. R. Tree, A. Muralidhar, P. S. Doyle, and K. D. Dorfman, Macromolecules 46, 83698382 (2013).
http://dx.doi.org/10.1021/ma401507f
25.
25.M. L. Mansfield and J. F. Douglas, Macromolecules 41, 54125421 (2008).
http://dx.doi.org/10.1021/ma702837v
26.
26.H. Yamakawa and W. H. Stockmayer, J. Chem. Phys. 57, 2843 (1972).
http://dx.doi.org/10.1063/1.1678675
27.
27.M. L. Mansfield, Macromolecules 19, 854859 (1986).
http://dx.doi.org/10.1021/ma00157a064
28.
28.Monte Carlo and Molecular Dynamics Simulations in Polymer Science, edited by K. Binder (Oxford University Press, Oxford, 1995).
29.
29.P. Doty, B. B. McGill, and S. A. Rice, Proc. Natl. Acad. Sci. U. S. A. 44, 432438 (1958).
http://dx.doi.org/10.1073/pnas.44.5.432
30.
30.J. E. Godfrey and H. Eisenberg, Biophys. Chem. 5, 301318 (1976).
http://dx.doi.org/10.1016/0301-4622(76)80042-7
31.
31.H. Lederer, R. P. May, J. K. Kjems, G. Baer, and H. Heumann, Eur. J. Biochem. 161, 191196 (1986).
http://dx.doi.org/10.1111/j.1432-1033.1986.tb10141.x
32.
32.K. Fukudome, K. Yamaoka, and H. Ochiai, Polym. J. 19, 13851394 (1987).
http://dx.doi.org/10.1295/polymj.19.1385
33.
33.C. Yuan, H. Chen, X. W. Lou, and L. A. Archer, Phys. Rev. Lett. 100, 018102 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.018102
34.
34.N. Rawat and P. Biswas, J. Chem. Phys. 131, 165104 (2009).
http://dx.doi.org/10.1063/1.3251769
35.
35.G. Voordouw, Z. Kam, N. Borochov, and H. Eisenberg, Biophys. Chem. 8, 171189 (1978).
http://dx.doi.org/10.1016/0301-4622(78)80008-8
36.
36.K. Soda and A. Wada, Biophys. Chem. 20, 185200 (1984).
http://dx.doi.org/10.1016/0301-4622(84)87023-4
37.
37.S. S. Sorlie and R. Pecora, Macromolecules 23, 487497 (1990).
http://dx.doi.org/10.1021/ma00204a022
38.
38.W. Eimer and R. Pecora, J. Chem. Phys. 94, 23242329 (1991).
http://dx.doi.org/10.1063/1.459904
39.
39.H. T. Goinga and R. Pecora, Macromolecules 24, 61286138 (1991).
http://dx.doi.org/10.1021/ma00023a013
40.
40.J. Seils and T. Dorfmüller, Biopolymers 31, 813825 (1991).
http://dx.doi.org/10.1002/bip.360310702
41.
41.T. Nicolai and M. Mandel, Macromolecules 22, 23482356 (1989).
http://dx.doi.org/10.1021/ma00195a059
42.
42.U.-S. Kim, B. S. Fujimoto, C. E. Furlong, J. A. Sundstrom, R. Humbert, D. C. Teller, and J. M. Schurr, Biopolymers 33, 17251745 (1993).
http://dx.doi.org/10.1002/bip.360331110
43.
43.G. F. Bonifacio, T. Brown, G. L. Conn, and A. N. Lane, Biophys. J. 73, 15321583 (1997).
http://dx.doi.org/10.1016/S0006-3495(97)78185-2
44.
44.J. Lapham, J. P. Rife, P. B. Moore, and D. M. Crothers, J. Biomol. NMR 10, 255262 (1997).
http://dx.doi.org/10.1023/A:1018310702909
45.
45.V. M. Marathias, B. Jerkovic, H. Arthanari, and P. H. Bolton, Biochemistry 39, 153160 (2000).
http://dx.doi.org/10.1021/bi9916630
46.
46.A. E. Nkodo, J. M. Garnier, B. Tinland, H. Ren, C. Desruisseaux, L. C. McCormick, G. Drouin, and G. W. Slater, Electrophoresis 22, 24242432 (2001).
http://dx.doi.org/10.1002/1522-2683(200107)22:12¡2424::AID-ELPS2424¿3.0.CO;2-1
47.
47.A. Tsortos, G. Papadakis, and E. Gizeli, Biopolymers 95, 824832 (2011), and references cited therein.
http://dx.doi.org/10.1002/bip.21684
48.
48.F. W. Studier, J. Mol. Biol. 11, 373390 (1965).
http://dx.doi.org/10.1016/S0022-2836(65)80064-X
49.
49.M. T. Record, Jr., C. P. Woodbury, and R. B. Inman, Biopolymers 14, 393408 (1975).
http://dx.doi.org/10.1002/bip.1975.360141012
50.
50.R. T. Kovacic and K. E. Van Holde, Biochemistry 16, 14901498 (1977).
http://dx.doi.org/10.1021/bi00626a038
51.
51.F. Vargas-Lara, S. M. Stavis, E. A. Strychalski, B. J. Nablo, J. Geist, F. W. Starr, and J. F. Douglas, “Dimensional reduction of duplex DNA under confinement to nanofluidic slits,” Soft Matter (to be published).
http://dx.doi.org/10.1039/c5sm01580d
http://aip.metastore.ingenta.com/content/aip/journal/jcp/143/12/10.1063/1.4930918
Loading
/content/aip/journal/jcp/143/12/10.1063/1.4930918
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/143/12/10.1063/1.4930918
2015-09-24
2016-12-10

Abstract

Although the scaling theory of polymer solutions has had many successes, this type of argument is deficient when applied to hydrodynamic solution properties. Since the foundation of polymer science, it has been appreciated that measurements of polymer size from diffusivity, sedimentation, and solution viscosity reflect a convolution of effects relating to polymer geometry and the strength of the hydrodynamic interactions within the polymer coil, i.e., “draining.” Specifically, when polymers are expanded either by self-excluded volume interactions or inherent chain stiffness, the hydrodynamic interactions within the coil become weaker. This means there is no general relationship between static and hydrodynamic size measurements, e.g., the radius of gyration and the hydrodynamic radius. We study this problem by examining the hydrodynamic properties of duplex DNA in solution over a wide range of molecular masses both by hydrodynamic modeling using a numerical path-integration method and by comparing with extensive experimental observations. We also considered how excluded volume interactions influence the solution properties of DNA and confirm that excluded volume interactions are rather weak in duplex DNA in solution so that the simple worm-like chain model without excluded volume gives a good leading-order description of DNA for molar masses up to 107 or 108 g/mol or contour lengths between 5 m and 50 m. Since draining must also depend on the detailed chain monomer structure, future work aiming to characterize polymers in solution through hydrodynamic measurements will have to more carefully consider the relation between chain molecular structure and hydrodynamic solution properties. In particular, scaling theory is inadequate for quantitative polymer characterization.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/143/12/1.4930918.html;jsessionid=EKm3YOUw1rZJWj833plKKgIv.x-aip-live-02?itemId=/content/aip/journal/jcp/143/12/10.1063/1.4930918&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/143/12/10.1063/1.4930918&pageURL=http://scitation.aip.org/content/aip/journal/jcp/143/12/10.1063/1.4930918'
Right1,Right2,Right3,