Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.S. Petit, S. A. Borshch, and V. Robert, “Ab initio simulation of paramagnetic NMR spectra: The 31P NMR in oxovanadium phosphates,” J. Am. Chem. Soc. 125, 39593966 (2003).
2.M. A. Aebersold, B. Gillon, O. Plantevin, L. Pardi, O. Kahn, P. Bergerat, I. von Seggern, F. Tuczek, L. Öhrström, A. Grand, and E. Lelièvre-Berna, J. Am. Chem. Soc. 120, 52385245 (1998).
3.J. A. Aramburu and M. Moreno, “Bonding in d9 complexes derived from EPR: Application to cucl2, cubr2, and cdcl2:cu2+,” J. Chem. Phys. 83, 60716083 (1985).
4.G. J. M. Janssen and W. C. Nieuwpoort, “Band gap in Nio: A cluster study,” Phys. Rev. B 38, 34493458 (1988).
5.A. van Oosten, R. Broer, and W. Nieuwpoort, “Heisenberg exchange enhancement by orbital relaxation in cuprate compounds,” Chem. Phys. Lett. 257, 207212 (1996).
6.C. J. Calzado, J. Cabrero, J. P. Malrieu, and R. Caballol, “Analysis of the magnetic coupling in binuclear complexes. I. Physics of the coupling,” J. Chem. Phys. 116, 27282747 (2002).
7.C. J. Calzado, J. F. Sanz, and J. P. Malrieu, “Accurate ab initio determination of magnetic interactions and hopping integrals in La2−xSrxCuO4 systems,” J. Chem. Phys. 112, 51585167 (2000).
8.J. Cabrero, C. J. Calzado, D. Maynau, R. Caballol, and J. P. Malrieu, “Metal ligand delocalization in magnetic orbitals of binuclear complexes,” J. Phys. Chem. A 106, 81468155 (2002).
9.R. Broer, L. Hozoi, and W. C. Nieuwpoort, “Non-orthogonal approaches to the study of magnetic interactions,” Mol. Phys. 101, 233240 (2003).
10.C. J. Calzado, C. Angeli, D. Taratiel, R. Caballol, and J.-P. Malrieu, “Analysis of the magnetic coupling in binuclear systems. III. The role of the ligand to metal charge transfer excitations revisited,” J. Chem. Phys. 131, 044327 (2009).
11.C. de Graaf, C. Sousa, I. d. P. R. Moreira, and F. Illas, J. Phys. Chem. A 105, 1137111378 (2001).
12.M. Spivak, C. Angeli, C. J. Calzado, and C. de Graaf, “Improving the calculation of magnetic coupling constants in MRPT methods,” J. Comput. Chem. 35, 16651671 (2014).
13.C. Angeli and C. J. Calzado, “The role of the magnetic orbitals in the calculation of the magnetic coupling constants from multireference perturbation theory methods,” J. Chem. Phys. 137, 034104 (2012).
14.C. Angeli, R. Cimiraglia, S. Evangelisti, T. Leininger, and J.-P. Malrieu, “Introduction of n electron valence states for multireference perturbation theory,” J. Chem. Phys. 114, 1025210264 (2001).
15.C. Angeli, R. Cimiraglia, and J. P. Malrieu, “N electron valence state perturbation theory: A fast implementation of the strongly contracted variant,” Chem. Phys. Lett. 350, 297305 (2001).
16.C. Angeli, R. Cimiraglia, and J. P. Malrieu, “N electron valence state perturbation theory: A spinless formulation and an efficient implementation of the strongly contracted and of the partially contracted variants,” J. Chem. Phys. 117, 91389153 (2002).
17.K. Andersson, P. A. Malmqvist, B. O. Roos, A. J. Sadlej, and K. Wolinski, “Second-order perturbation theory with a CASSCF reference function,” J. Phys. Chem. 94, 54835488 (1990).
18.J. Miralles, O. Castell, R. Caballol, and J.-P. Malrieu, “Specific CI calculation of energy differences: Transition energies and bond energies,” Chem. Phys. 172, 3343 (1993).
19.F. Neese, “Sum-over-states based multireference ab initio calculation of EPR spin Hamiltonian parameters for transition metal complexes. A case study,” Magn. Reson. Chem. 42, S187S198 (2004).
20.S. Vancoillie, P.-A. Malmqvist, and K. Pierloot, “Calculation of EPR g tensors for transition-metal complexes based on multiconfigurational perturbation theory (CASPT2),” ChemPhysChem 8, 18031815 (2007).
21.S. Vancoillie and K. Pierloot, J. Phys. Chem. A 112, 40114019 (2008).
22.M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. DeFrees, and J. A. Pople, “Self consistent molecular orbital methods. XXIII. A polarization type basis set for second row elements,” J. Chem. Phys. 77, 36543665 (1982).
23.V. A. Rassolov, J. A. Pople, M. A. Ratner, and T. L. Windus, “6-31G* basis set for atoms k through Zn,” J. Chem. Phys. 109, 12231229 (1998).
24.A. A. Gewirth, S. L. Cohen, H. J. Schugar, and E. I. Solomon, “Spectroscopic and theoretical studies of the unusual EPR parameters of distorted tetrahedral cupric sites: Correlations to x-ray spectral features of core levels,” Inorg. Chem. 26, 11331146 (1987).
25.S. V. Didziulis, S. L. Cohen, A. A. Gewirth, and E. I. Solomon, “Variable photon energy photoelectron spectroscopic studies of copper chlorides: An experimental probe of metal-ligand bonding and changes in electronic structure on ionization,” J. Am. Chem. Soc. 110, 250268 (1988).
26.A. Ramírez-Solís, R. Poteau, A. Vela, and J. P. Daudey, “Comparative studies of the spectroscopy of cucl2: DFT versus standard ab initio approaches,” J. Chem. Phys. 122, 164306 (2005).
27.M. Caffarel, E. Giner, A. Scemama, and A. Ramírez-Solís, “Spin density distribution in open-shell transition metal systems: A comparative post-Hartree–Fock, density functional theory, and quantum Monte Carlo study of the CuCl2 molecule,” J. Chem. Theory Comput. 10, 5286 (2014).
28.R. S. Mulliken, “Electronic population analysis on lCAOo–MO molecular wave functions. I,” J. Chem. Phys. 23, 18331840 (1955).
29.V. N. Staroverov, G. E. Scuseria, J. Tao, and J. P. Perdew, “Comparative assessment of a new nonempirical density functional: Molecules and hydrogen-bonded complexes,” J. Chem. Phys. 119, 1212912137 (2003).
30.Y. Zhao and D. Truhlar, “The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals,” Theor. Chem. Acc. 120, 215241 (2008).
31.C. Lee, W. Yang, and R. G. Parr, “Development of the colle salvetti correlation energy formula into a functional of the electron density,” Phys. Rev. B 37, 785789 (1988).
32.A. D. Becke, “Density functional thermochemistry. III. The role of exact exchange,” J. Chem. Phys. 98, 56485652 (1993).
33.A. D. Becke, “Density-functional exchange-energy approximation with correct asymptotic behavior,” Phys. Rev. A 38, 30983100 (1988).
34.R. K. Szilagyi, M. Metz, and E. I. Solomon, “Spectroscopic calibration of modern density functional methods using [CuCl4]2−,” J. Phys. Chem. A 106, 29943007 (2002).
35.E. Ruiz, J. Cano, S. Alvarez, and P. Alemany, “Magnetic coupling in end-on azido-bridged transition metal complexes, a density functional study,” J. Am. Chem. Soc. 120, 1112211129 (1998).
36.M. Atanasov, P. Comba, B. Martin, V. Müller, G. Rajaraman, H. Rohwer, and S. Wunderlich, “DFT models for copper(ii) bispidine complexes: Structures, stabilities, isomerism, spin distribution, and spectroscopy,” J. Comput. Chem. 27, 12631277 (2006).
37.B. Huron, P. Rancurel, and J. Malrieu, J. Chem. Phys. 58, 5745 (1973).
38.S. Evangelisti, J. Daudey, and J. Malrieu, Chem. Phys. 75, 91 (1983).
39.A. D. Becke, “Basis-set-free density-functional quantum chemistry,” Int. J. Quantum Chem. 36, 599609 (1989).
40.J. P. Perdew, “Density-functional approximation for the correlation energy of the inhomogeneous electron gas,” Phys. Rev. B 33, 88228824 (1986).
41.C. Remenyi, R. Reviakine, and M. Kaupp, “Density functional study of EPR parameters and spin-density distribution of azurin and other blue copper proteins,” J. Phys. Chem. B 111, 82908304 (2007).
42.E. Bosch, P. Crozet, A. Ross, and J. Brown, “Fourier transform spectra of the E2Πu–X2Πg(3/2) system of cucl2: 2. Rovibronic levels of the ground state up to 4000 cm:1,” J. Mol. Spectrosc. 202, 253261 (2000).
43.J.-P. Daudey, J.-L. Heully, and J.-P. Malrieu, “Size consistent self consistent truncated or selected configuration interaction,” J. Chem. Phys. 99, 12401254 (1993).
44.J. Meller, J. L. Heully, and J. P. Malrieu, “Size-consistent self-consistent combination of selected CI and perturbation theory,” Chem. Phys. Lett. 218, 276282 (1994).
45.J. P. Malrieu, J. P. Daudey, and R. Caballol, “Multireference self consistent size consistent singles and doubles configuration interaction for ground and excited states,” J. Chem. Phys. 101, 89088921 (1994).
46.C. F. Bender and E. R. Davidson, Phys. Rev. 183, 23 (1969).
47.R. J. Buenker and S. D. Peyerimholf, Theor. Chim. Acta 35, 33 (1974).
48.R. J. Buenker, S. D. Peyerimholf, and P. J. Bruna, Computational Theoretical Organic Chemistry (Reidel, Dordrecht, 1981), p. 55.
49.R. J. Harrison, J. Chem. Phys. 94, 5021 (1991).
50.J. Rubio, J. Novoa, and F. Illas, “Convergence of a multireference second-order mbpt method (CIPSI) using a zero-order wavefunction derived from an {MS}{SCF} calculation,” Chem. Phys. Lett. 126, 98102 (1986).
51.R. Cimiraglia and M. Persico, “Recent advances in multireference second order perturbation CI: The CIPSI method revisited,” J. Comput. Chem. 8, 3947 (1987).
52.C. Angeli and M. Persico, “Multireference perturbation CI II. Selection of the zero-order space,” Theor. Chem. Acc. 98, 117128 (1997).
53.C. Angeli, R. Cimiraglia, and J.-P. Malrieu, “On a mixed Møller–Plesset Epstein–Nesbet partition of the Hamiltonian to be used in multireference perturbation configuration interaction,” Chem. Phys. Lett. 317, 472480 (2000).
54.G. Emmanuel, S. Anthony, and C. Michel, “Using perturbatively selected configuration interaction in quantum Monte Carlo calculations,” Can. J. Chem. 91, 879885 (2013).
55.A. Scemama, T. Applencourt, E. Giner, and M. Caffarel, “Accurate nonrelativistic ground-state energies of 3d transition metal atoms,” J. Chem. Phys. 141, 244110 (2014).
56.E. Giner, A. Scemama, and M. Caffarel, “Fixed-node diffusion Monte Carlo potential energy curve of the fluorine molecule f2 using selected configuration interaction trial wavefunctions,” J. Chem. Phys. 142, 044115 (2015).
57.F. A. Evangelista, “Adaptive multiconfigurational wave functions,” J. Chem. Phys. 140, 124114 (2014).
58.P. S. Epstein, “The stark effect from the point of view of Schroedinger’s quantum theory,” Phys. Rev. 28, 695710 (1926).
59.R. K. Nesbet, “Configuration interaction in orbital theories,” Proc. R. Soc. London, Ser. A 230, 312321 (1955).
60.C. Angeli and R. Cimiraglia, “Multireference perturbation CI IV. Selection procedure for one electron properties,” Theor. Chem. Acc. 105, 259264 (2001).
61.M. S. Gordon and M. W. Schmidt, “Advances in electronic structure theory: GAMESS a decade later,” in Theory and Applications of Computational Chemistry: The First Forty Years, edited by C. E. Dykstra, G. Frenking, K. S. Kim, and G. E. Scuseria (Elsevier, Amsterdam, 2005), pp. 11671189.
62.A. Scemama, E. Giner, T. Applencourt, G. David, and M. Caffarel, Quantum package v0.6, Zenodo, 2015, available at
63.L. Brillouin, “Le champ self-consistent, pour des électrons liés; la supraconductibilité,” J. Phys. Radium 4, 333361 (1933).
64.B. Levy and G. Berthier, “Generalized brillouin theorem for multiconfigurational SCF theories,” Int. J. Quantum Chem. 2, 307319 (1968).
65.J. A. Pople, M. Head Gordon, and K. Raghavachari, “Quadratic configuration interaction. A general technique for determining electron correlation energies,” J. Chem. Phys. 87, 59685975 (1987).
66.J. Goldstone, “Derivation of the brueckner many-body theory,” Proc. R. Soc. London, Ser. A 239, 267279 (1957).
67.I. Nebot Gil, J. Sanchez Marin, J. P. Malrieu, J. L. Heully, and D. Maynau, “Self consistent intermediate Hamiltonians: A coupled cluster type formulation of the singles and doubles configuration interaction matrix dressing,” J. Chem. Phys. 103, 25762588 (1995).
68.J. P. Malrieu, P. Durand, and J. P. Daudey, “Intermediate Hamiltonians as a new class of effective Hamiltonians,” J. Phys. A: Math. Gen. 18, 809 (1985).
69.J. P. Malrieu, J. L. Heully, and A. Zaitsevskii, “Multiconfigurational second order perturbative methods: Overview and comparison of basic properties,” Theor. Chim. Acta 90, 167187 (1995).
70.J. L. Heully, J. P. Malrieu, and A. Zaitsevskii, “On the origin of size inconsistency of the second order state specific effective Hamiltonian method,” J. Chem. Phys. 105, 68876891 (1996).
71. Note that similar integrals appear in the Fock operator of the Cu+ cation described with Cu2+ ROHF orbitals.
72.H. F. King, R. E. Stanton, H. Kim, R. E. Wyatt, and R. G. Parr, “Corresponding orbitals and the nonorthogonality problem in molecular quantum mechanics,” J. Chem. Phys. 47, 19361941 (1967).
73.A. Domingo, C. Angeli, C. de Graaf, and V. Robert, “Electronic reorganization triggered by electron transfer: The intervalence charge transfer of a fe3+/fe2+ bimetallic complex,” J. Comput. Chem. 36, 861869 (2015).
74.B. Meyer, A. Domingo, T. Krah, and V. Robert, “Charge transfer processes: The role of optimized molecular orbitals,” Dalton Trans. 43, 1120911215 (2014).
75.P. C. Hiberty and S. Shaik, “Breathing-orbital valence bond method, a modern valence bond method that includes dynamic correlation,” Theor. Chem. Acc. 108, 255272 (2002).
76.J.-P. Malrieu, N. Guihéry, C. j. Calzado, and C. Angeli, “Bond electron pair: Its relevance and analysis from the quantum chemistry point of view,” J. Comput. Chem. 28, 3550 (2007).
77.J. P. Malrieu, C. Angeli, and R. Cimiraglia, “On the relative merits of non orthogonal and orthogonal valence bond methods illustrated on the hydrogen molecule,” J. Chem. Educ. 85, 150 (2008).
78.A. F. Sax, “Chemical bonding: The orthogonal valence-bond view,” Int. J. Mol. Sci. 16, 88968933 (2015).
79.Z. Chen, F. Ying, X. Chen, J. Song, P. Su, L. Song, Y. Mo, Q. Zhang, and W. Wu, “Xmvb 2.0: A new version of xiamen valence bond program,” Int. J. Quantum Chem. 115, 731737 (2015).
80.D. E. Woon and T. H. Dunning, “Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon,” J. Chem. Phys. 98, 13581371 (1993).
81.N. B. Balabanov and K. A. Peterson, “Systematically convergent basis sets for transition metals. I. All-electron correlation consistent basis sets for the 3d elements sc–zn,” J. Chem. Phys. 123, 064107 (2005).
82.J. Bauschlicher and W. Charles, “Large atomic natural orbital basis sets for the first transition row atoms,” Theor. Chim. Acta 92, 183198 (1995).
83.P. O. Widmark, B. Persson, and B. Roos, “Density matrix averaged atomic natural orbital (ano) basis sets for correlated molecular wave functions,” Theor. Chim. Acta 79, 419432 (1991).
84.W. T. Borden and E. R. Davidson, “Theoretical studies of diradicals containing four .pi. Electrons,” Acc. Chem. Res. 14, 6976 (1981).
85.W. T. Borden, E. R. Davidson, and D. Feller, “Rhf and two-configuration scf calculations are inappropriate for conjugated diradicals,” Tetrahedron 38, 737739 (1982).
86.N. Suaud, R. Ruamps, N. Guihéry, and J. P. Malrieu, “A strategy to determine appropriate active orbitals and accurate magnetic couplings in organic magnetic systems,” J. Chem. Theory Comput. 8, 41274137 (2012).
87.N. Suaud, R. Ruamps, J. P. Malrieu, and N. Guihéry, J. Phys. Chem. A 118, 58765884 (2014).

Data & Media loading...


Article metrics loading...



The aim of this paper is to unravel the physical phenomena involved in the calculation of the spin density of the CuCl and [CuCl]2− systems using wave function methods. Various types of wave functions are used here, both variational and perturbative, to analyse the effects impacting the spin density. It is found that the spin density on the chlorine ligands strongly depends on the mixing between two types of valence bond structures. It is demonstrated that the main difficulties found in most of the previous studies based on wave function methods come from the fact that each valence bond structure requires a different set of molecular orbitals and that using a unique set of molecular orbitals in a variational procedure leads to the removal of one of them from the wave function. Starting from these results, a method to compute the spin density at a reasonable computational cost is proposed.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd