Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/143/12/10.1063/1.4932229
1.
1.J. S. Gold, S. J. Milder, J. W. Lewis, and D. S. Kliger, J. Am. Chem. Soc. 107, 8285 (1985).
http://dx.doi.org/10.1021/ja00312a092
2.
2.J. Meyer-Ilse, D. Akimov, and B. Dietzek, J. Phys. Chem. Lett. 3, 182 (2012).
http://dx.doi.org/10.1021/jz2014659
3.
3.C. Niezborala and F. Hache, J. Am. Chem. Soc. 130, 12783 (2008).
http://dx.doi.org/10.1021/ja8039844
4.
4.J. W. Lewis, R. F. Tilton, C. M. Einterz, S. J. Milder, I. D. Kuntz, and D. S. Kliger, J. Phys. Chem. 89, 289 (1985).
http://dx.doi.org/10.1021/j100248a023
5.
5.X. Xie and J. D. Simon, J. Am. Chem. Soc. 112, 7802 (1990).
http://dx.doi.org/10.1021/ja00177a054
6.
6.T. Dartigalongue and F. Hache, Chem. Phys. Lett. 415, 313 (2005).
http://dx.doi.org/10.1016/j.cplett.2005.09.022
7.
7.X. Xie and J. D. Simon, Rev. Sci. Instrum. 60, 2614 (1989).
http://dx.doi.org/10.1063/1.1140681
8.
8.A. Trifonov, I. Buchvarov, A. Lohr, F. Würthner, and T. Fiebig, Rev. Sci. Instrum. 81, 043104 (2010).
http://dx.doi.org/10.1063/1.3340892
9.
9.C. Niezborala and F. Hache, J. Opt. Soc. Am. B 23, 2418 (2006).
http://dx.doi.org/10.1364/JOSAB.23.002418
10.
10.T. Dartigalongue and F. Hache, J. Opt. Soc. Am. B 20, 1780 (2003).
http://dx.doi.org/10.1364/JOSAB.20.001780
11.
11.L. Mendonça, F. Hache, P. Changenet-Barret, P. Plaza, H. Chosrowjan, S. Taniguchi, and Y. Imamoto, J. Am. Chem. Soc. 135, 14637 (2013).
http://dx.doi.org/10.1021/ja404503q
12.
12.I. Eom, S.-H. Ahn, H. Rhee, and M. Cho, Opt. Express 19, 10017 (2011).
http://dx.doi.org/10.1364/OE.19.010017
13.
13.I. Eom, S. Ahn, H. Rhee, and M. Cho, Phys. Rev. Lett. 108, 103901 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.103901
14.
14.S. C. Bjorling, R. A. Goldbeck, S. J. Milder, C. E. Randall, J. W. Lewis, and D. S. Kliger, J. Phys. Chem. 95, 4685 (1991).
http://dx.doi.org/10.1021/j100165a018
15.
15.B. Dutta and J. Helbing, Opt. Express 23, 16449 (2015).
http://dx.doi.org/10.1364/OE.23.016449
16.
16.L. Lepetit, G. Chériaux, and M. Joffre, J. Opt. Soc. Am. B 12, 2467 (1995).
http://dx.doi.org/10.1364/JOSAB.12.002467
17.
17.R. C. Jones, J. Opt. Soc. Am. 38, 671 (1948).
http://dx.doi.org/10.1364/JOSA.38.000671
18.
18.See supplementary material at http://dx.doi.org/10.1063/1.4932229 for detailed calculation of the Jones matrix and observed LD and LB spectra for comparison with component 2. In Eqs. (S1)-(S32) of the supplementary material, derivation of the Jones matrix with N-matrix method is given. In Fig. S1, LD and LB spectra ofobtained atϕ = 5° are shown.[Supplementary Material]
19.
19.V. Joshi and P. K. Ghosh, J. Am. Chem. Soc. 111, 5604 (1989).
http://dx.doi.org/10.1021/ja00197a016
20.
20.K. Hiramatsu, H. Kano, and T. Nagata, Opt. Express 21, 13515 (2013).
http://dx.doi.org/10.1364/OE.21.013515
21.
21.A. N. Tarnovsky, W. Gawelda, M. Johnson, C. Bressler, and M. Chergui, J. Phys. Chem. B 110, 26497 (2006).
http://dx.doi.org/10.1021/jp064696f
22.
22.K. Kalyanasundaram, Coord. Chem. Rev. 46, 159 (1982).
http://dx.doi.org/10.1016/0010-8545(82)85003-0
23.
23.A. J. McCaffery, S. F. Mason, and B. J. Norman, J. Chem. Soc. A 1428 (1969).
http://dx.doi.org/10.1039/j19690001428
24.
24.G. V. Buxton, C. L. Greenstock, W. P. Helman, A. B. Ross, and W. Tsang, J. Phys. Chem. Ref. Data 17, 513 (1988).
http://dx.doi.org/10.1063/1.555805
25.
25.M. Mizuno and T. Tahara, J. Phys. Chem. A 107, 2411 (2003).
http://dx.doi.org/10.1021/jp022030p
26.
26.C. Ruckebusch, S. Aloïse, L. Blanchet, J. P. Huvenne, and G. Buntinx, Chemom. Intell. Lab. Syst. 91, 17 (2008).
http://dx.doi.org/10.1016/j.chemolab.2007.05.007
http://aip.metastore.ingenta.com/content/aip/journal/jcp/143/12/10.1063/1.4932229
Loading
/content/aip/journal/jcp/143/12/10.1063/1.4932229
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/143/12/10.1063/1.4932229
2015-09-30
2016-10-01

Abstract

We report the development of broadband and sensitive time-resolved circular dichroism (TRCD) spectroscopy by exploiting optical heterodyne detection. Using this method, transient CD signals of submillidegree level can be detected over the spectral range of 415-730 nm. We also demonstrate that the broadband measurement with the aid of singular value decomposition enables the discrimination of genuine TRCD signals from artificial optical-anisotropy, such as linear birefringence and linear dichroism, induced by photoexcitation.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/143/12/1.4932229.html;jsessionid=lPU9JLE0rew-9IYDsC4_EaAs.x-aip-live-06?itemId=/content/aip/journal/jcp/143/12/10.1063/1.4932229&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/143/12/10.1063/1.4932229&pageURL=http://scitation.aip.org/content/aip/journal/jcp/143/12/10.1063/1.4932229'
Right1,Right2,Right3,