Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/143/13/10.1063/1.4930014
1.
1.M. Armand and J. M. Tarascon, Nature 451, 652 (2008).
http://dx.doi.org/10.1038/451652a
2.
2.L. Vitos, A. V. Ruban, H. L. Skriver, and J. Kollar, Surf. Sci. 411, 186 (1998).
http://dx.doi.org/10.1016/S0039-6028(98)00363-X
3.
3.A. Aryanfar, D. J. Brooks, A. J. Colussi, and M. R. Hoffmann, Phys. Chem. Chem. Phys. 16, 24965 (2014).
http://dx.doi.org/10.1039/C4CP03590A
4.
4.W. Xu, J. L. Wang, F. Ding, X. L. Chen, E. Nasybutin, Y. H. Zhang, and J. G. Zhang, Energy Environ. Sci. 7, 513 (2014).
http://dx.doi.org/10.1039/c3ee40795k
5.
5.B. Huskinson, M. P. Marshak, C. Suh, S. Er, M. R. Gerhardt, C. J. Galvin, X. Chen, A. Aspuru-Guzik, R. G. Gordon, and M. J. J. Aziz, Nature 505, 195 (2014).
http://dx.doi.org/10.1038/nature12909
6.
6.J. B. Goodenough and Y. Kim, J. Power Sources 196, 6688 (2011).
http://dx.doi.org/10.1016/j.jpowsour.2010.11.074
7.
7.A. Aryanfar, D. Brooks, B. V. Merinov, W. A. Goddard III, A. J. Colussi, and M. R. Hoffmann, J. Phys. Chem. Lett. 5, 1721 (2014).
http://dx.doi.org/10.1021/jz500207a
8.
8.C. Brissot, M. Rosso, J. N. Chazalviel, and S. Lascaud, J. Electrochem. Soc. 146, 4393 (1999).
http://dx.doi.org/10.1149/1.1392649
9.
9.A. D. P. F. Orsini, B. Beaudoin, J. M. Tarascon, M. Trentin, N. Langenhuisen, E. D. Beer, and P. Notten, J. Power Sources 76, 19 (1998).
http://dx.doi.org/10.1016/S0378-7753(98)00128-1
10.
10.X. H. Liu, L. Zhong, L. Q. Zhang, A. Kushima, S. X. Mao, J. Li, Z. Z. Ye, J. P. Sullivan, and J. Y. Huang, Appl. Phys. Lett. 98, 183107 (2011).
http://dx.doi.org/10.1063/1.3585655
11.
11.C. Monroe and J. Newman, J. Electrochem. Soc. 151, A880 (2004).
http://dx.doi.org/10.1149/1.1710893
12.
12.T. Nishida, K. Nishikawa, M. Rosso, and Y. Fukunaka, Electrochim. Acta 100, 333 (2013).
http://dx.doi.org/10.1016/j.electacta.2012.12.131
13.
13.C. P. Nielsen and H. Bruus, preprint arXiv:1505.07571 (2015).
14.
14.K. J. Harry, D. T. Hallinan, D. Y. Parkinson, A. A. MacDowell, and N. P. Balsara, Nat. Mater. 13, 69 (2014).
http://dx.doi.org/10.1038/nmat3793
15.
15.J. Steiger, D. Kramer, and R. Monig, J. Power Sources 261, 112 (2014).
http://dx.doi.org/10.1016/j.jpowsour.2014.03.029
16.
16.P. C. Howlett, D. R. MacFarlane, and A. F. Hollenkamp, J. Power Sources 114, 277 (2003).
http://dx.doi.org/10.1016/S0378-7753(02)00603-1
17.
17.N. Schweikert, A. Hofmann, M. Schulz, M. Scheuermann, S. T. Boles, T. Hanemann, H. Hahn, and S. Indris, J. Power Sources 228, 237 (2013).
http://dx.doi.org/10.1016/j.jpowsour.2012.11.124
18.
18.R. Younesi, G. M. Veith, P. Johansson, K. Edström, and T. Vegge, Energy Environ. Sci. 8, 1905 (2015).
http://dx.doi.org/10.1039/C5EE01215E
19.
19.C. Brissot, M. Rosso, J. N. Chazalviel, and S. Lascaud, J. Power Sources 81, 925 (1999).
http://dx.doi.org/10.1016/S0378-7753(98)00242-0
20.
20.A. Aryanfar, D. J. Brooks, A. J. Colussi, B. V. Merinov, W. A. Goddard III, and M. R. Hoffmann, Phys. Chem. Chem. Phys. 17, 8000 (2015).
http://dx.doi.org/10.1039/C4CP05786D
21.
21.I. W. Seong, C. H. Hong, B. K. Kim, and W. Y. Yoon, J. Power Sources 178, 769 (2008).
http://dx.doi.org/10.1016/j.jpowsour.2007.12.062
22.
22.G. Stone, S. Mullin, A. Teran, D. Hallinan, A. Minor, A. Hexemer, and N. Balsara, J. Electrochem. Soc. 159, A222 (2012).
http://dx.doi.org/10.1149/2.030203jes
23.
23.R. Bhattacharyya, B. Key, H. L. Chen, A. S. Best, A. F. Hollenkamp, and C. P. Grey, Nat. Mater. 9, 504 (2010).
http://dx.doi.org/10.1038/nmat2764
24.
24.S. Chandrashekar, N. M. Trease, H. J. Chang, L.-S. Du, C. P. Grey, and A. Jerschow, Nat. Mater. 11, 311 (2012).
http://dx.doi.org/10.1038/nmat3246
25.
25.J. N. Chazalviel, Phys. Rev. A 42, 7355 (1990).
http://dx.doi.org/10.1103/PhysRevA.42.7355
26.
26.C. Monroe and J. Newman, J. Electrochem. Soc. 150, A1377 (2003).
http://dx.doi.org/10.1149/1.1606686
27.
27.D. R. Ely, A. Jana, and R. E. García, J. Power Sources 272, 581 (2014).
http://dx.doi.org/10.1016/j.jpowsour.2014.08.062
28.
28.H. E. Park, C. H. Hong, and W. Y. Yoon, J. Power Sources 178, 765 (2008).
http://dx.doi.org/10.1016/j.jpowsour.2007.12.081
29.
29.J. Diggle, A. Despic, and J. M. Bockris, J. Electrochem. Soc. 116, 1503 (1969).
http://dx.doi.org/10.1149/1.2411588
30.
30.C. Brissot, M. Rosso, J. N. Chazalviel, and S. Lascaud, J. Power Sources 94, 212 (2001).
http://dx.doi.org/10.1016/S0378-7753(00)00589-9
31.
31.A. J. Bard and L. R. Faulkner, Electrochemical methods, fundamentals and applications (Wiley, New York, 1980), Vol. 2.
32.
32.R. Akolkar, J. Power Sources 246, 84 (2014).
http://dx.doi.org/10.1016/j.jpowsour.2013.07.056
33.
33.A. Aryanfar, “Method and device for dendrite research and discovery in batteries,” U.S. patent application 14/201,979 (September 11, 2014).
34.
34.A. C. T. van Duin, S. Dasgupta, F. Lorant, and W. A. Goddard, J. Phys. Chem. A 105, 9396 (2001).
http://dx.doi.org/10.1021/jp004368u
35.
35.K. Chenoweth, A. C. T. van Duin, and W. A. Goddard, J. Phys. Chem. A 112, 1040 (2008).
http://dx.doi.org/10.1021/jp709896w
36.
36.See supplementary material at http://dx.doi.org/10.1063/1.4930014 for the list of ReaxFF parameters; the NVT simulation movie NVT of a sample glass-phase lithium dendrite created by CG-MC method; for surface diffusion mechanism; and for bulk diffusion mechanism.[Supplementary Material]
37.
37.D. Sheppard, R. Terrell, and G. Henkelman, J. Chem. Phys. 128, 134106 (2008).
http://dx.doi.org/10.1063/1.2841941
38.
38.B. J. Berne, G. Cicootti, and D. F. Coker, “Classical and quantum dynamics in condensed phase simulations” (1998), p. 385.
39.
39.G. Henkelman, B. P. Uberuaga, and H. Jónsson, J. Chem. Phys. 113, 9901 (2000).
http://dx.doi.org/10.1063/1.1329672
40.
40.G. Henkelman and H. Jónsson, J. Chem. Phys. 113, 9978 (2000).
http://dx.doi.org/10.1063/1.1323224
41.
41.G. J. Martyna, D. J. Tobias, and M. L. Klein, J. Chem. Phys. 101, 4177 (1994).
http://dx.doi.org/10.1063/1.467468
42.
42.M. Jäckle and A. Groß, J. Chem. Phys. 141, 174710 (2014).
http://dx.doi.org/10.1063/1.4901055
http://aip.metastore.ingenta.com/content/aip/journal/jcp/143/13/10.1063/1.4930014
Loading
/content/aip/journal/jcp/143/13/10.1063/1.4930014
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/143/13/10.1063/1.4930014
2015-10-01
2016-08-28

Abstract

The densifying kinetics of lithium dendrites is characterized with effective activation energy of ≈ 6 − 7 kcal mol−1 in our experiments and molecular dynamics computations. We show that heating lithium dendrites for 55 °C reduces the representative dendrites length up to 36%. NVT reactive force field simulations on three-dimensional glass phase dendrites produced by our coarse grained Monte Carlo method reveal that for any given initial dendrite morphology, there is a unique stable atomic arrangement for a certain range of temperature, combined with rapid morphological transition (∼10 ps) within quasi-stable states involving concurrent and diffusions. Our results are useful for predicting the inherent structural characteristics of lithium dendrites such as dominant coordination number.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/143/13/1.4930014.html;jsessionid=Tko5bsedVISz1TVIFrnbEcGU.x-aip-live-06?itemId=/content/aip/journal/jcp/143/13/10.1063/1.4930014&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/143/13/10.1063/1.4930014&pageURL=http://scitation.aip.org/content/aip/journal/jcp/143/13/10.1063/1.4930014'
Right1,Right2,Right3,