Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/143/13/10.1063/1.4932189
1.
1.G. A. Jeffrey and W. Saenger, Hydrogen Bonding in Biological Structures (Springer, New York, 1991).
2.
2.G. D. Rose and R. Wolfenden, Annu. Rev. Biophys. Biomol. Struct. 22, 381 (1993).
http://dx.doi.org/10.1146/annurev.bb.22.060193.002121
3.
3.P. G. Debenedetti, J. Phys.: Condens. Matter 15, R1669 (2003).
http://dx.doi.org/10.1088/0953-8984/15/45/R01
4.
4.E. T. J. Nibbering and T. Elsaesser, Chem. Rev. 104, 1887 (2004).
http://dx.doi.org/10.1021/cr020694p
5.
5.H. J. Bakker and J. L. Skinner, Chem. Rev. 110, 1498 (2010).
http://dx.doi.org/10.1021/cr9001879
6.
6.D. Madsen, J. Stenger, J. Dreyer, E. J. Nibbering, P. Hamm, and T. Elsaesser, Chem. Phys. Lett. 341, 56 (2001).
http://dx.doi.org/10.1016/S0009-2614(01)00460-2
7.
7.J. Stenger, D. Madsen, J. Dreyer, E. T. J. Nibbering, P. Hamm, and T. Elsaesser, J. Chem. Phys. A 105, 2929 (2001).
http://dx.doi.org/10.1021/jp003153h
8.
8.D. Madsen, J. Stenger, J. Dreyer, P. Hamm, E. J. Nibbering, and T. Elsaesser, Bull. Chem. Soc. Jpn. 75, 909 (2002).
http://dx.doi.org/10.1246/bcsj.75.909
9.
9.K. Heyne, N. Huse, E. T. J. Nibbering, and T. Elsaesser, Chem. Phys. Lett. 369, 591 (2003).
http://dx.doi.org/10.1016/S0009-2614(03)00023-X
10.
10.K. Heyne, N. Huse, J. Dreyer, E. T. J. Nibbering, and T. Elsaesser, J. Chem. Phys. 121, 902 (2004).
http://dx.doi.org/10.1063/1.1762873
11.
11.J. Edler, P. Hamm, and A. C. Scott, Phys. Rev. Lett. 88, 067403 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.067403
12.
12.J. Edler and P. Hamm, Phys. Rev. B 69, 214301 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.214301
13.
13.M. L. Cowan, B. D. Bruner, N. Huse, J. R. Dwyer, B. Chugh, E. T. J. Nibbering, T. Elsaesser, and R. J. D. Miller, Nature 434, 199 (2005).
http://dx.doi.org/10.1038/nature03383
14.
14.K. Ramasesha, L. D. Marco, A. Mandal, and A. Tokmakoff, Nat. Chem. 5, 935 (2013).
http://dx.doi.org/10.1038/nchem.1757
15.
15.F. Perakis, J. A. Borek, and P. Hamm, J. Chem. Phys. 139, 014501 (2013).
http://dx.doi.org/10.1063/1.4812216
16.
16.O. Henri-Rousseau and P. Blaise, Adv. Chem. Phys. 103, 1 (1998).
http://dx.doi.org/10.1002/9780470141625.ch1
17.
17.G. M. Florio, T. S. Zwier, E. M. Myshakin, K. D. Jordan, and E. L. Sibert, J. Chem. Phys. 118, 1735 (2003).
http://dx.doi.org/10.1063/1.1530573
18.
18.E. M. Myshakin, K. D. Jordan, E. L. Sibert III, and M. A. Johnson, J. Chem. Phys. 119, 10138 (2003).
http://dx.doi.org/10.1063/1.1616918
19.
19.J. Dreyer, J. Chem. Phys. 122, 184306 (2005).
http://dx.doi.org/10.1063/1.1891727
20.
20.K. Giese, M. Petkovic, H. Naundorf, and O. Kühn, Phys. Rep. 430, 211 (2006).
http://dx.doi.org/10.1016/j.physrep.2006.04.005
21.
21.H. C. Liu, Y. M. Wang, and J. M. Bowman, J. Am. Chem. Soc. 136, 5888 (2014).
http://dx.doi.org/10.1021/ja501986t
22.
22.N. Heine, E. G. Kratz, R. Bergmann, D. P. Schofield, K. R. Asmis, K. D. Jordan, and A. B. McCoy, J. Phys. Chem. A 118, 8188 (2014).
http://dx.doi.org/10.1021/jp500964j
23.
23.W. H. Robertson, E. A. Price, J. M. Weber, J.-W. Shin, G. H. Weddle, and M. A. Johnson, J. Phys. Chem. A 107, 6527 (2003).
http://dx.doi.org/10.1021/jp030474v
24.
24.B. M. Elliott, R. A. Relph, J. R. Roscioli, J. C. Bopp, G. H. Gardenier, T. L. Guasco, and M. A. Johnson, J. Chem. Phys. 129, 094303 (2008).
http://dx.doi.org/10.1063/1.2966002
25.
25.R. A. Relph, B. M. Elliott, G. H. Weddle, M. A. Johnson, J. Ding, and K. D. Jordan, J. Phys. Chem. A 113, 975 (2009).
http://dx.doi.org/10.1021/jp808283r
26.
26.H. K. Gerardi, A. F. DeBlase, X. Su, K. D. Jordan, A. B. McCoy, and M. A. Johnson, J. Phys. Chem. Lett. 2, 2437 (2011).
http://dx.doi.org/10.1021/jz200937v
27.
27.D. J. Goebbert, E. Garand, T. Wende, R. Bergmann, G. Meijer, K. R. Asmis, and D. M. Neumark, J. Phys. Chem. A 113, 7584 (2009).
http://dx.doi.org/10.1021/jp9017103
28.
28.P. Hamm and G. Stock, Phys. Rev. Lett. 109, 173201 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.173201
29.
29.P. Hamm and G. Stock, Mol. Phys. 111, 2046 (2013).
http://dx.doi.org/10.1080/00268976.2013.782438
30.
30.Conical Intersections: Theory, Computation and Experiment, edited by W. Domcke, D. R. Yarkony, and H. Köppel (World Scientific, Singapore, 2011).
31.
31.M. A. Robb, M. Garavelli, M. Olivucci, and F. Bernardi, Rev. Comput. Chem. 15, 87 (2000).
http://dx.doi.org/10.1002/9780470125922.ch2
32.
32.B. Levine and T. Martinez, Annu. Rev. Phys. Chem. 58, 613 (2007).
http://dx.doi.org/10.1146/annurev.physchem.57.032905.104612
33.
33.A. Staib and J. T. Hynes, Chem. Phys. Lett. 204, 197 (1993).
http://dx.doi.org/10.1016/0009-2614(93)85627-Z
34.
34.A. Staib, D. Borgis, and J. T. Hynes, J. Chem. Phys. 102, 2487 (1995).
http://dx.doi.org/10.1063/1.468678
35.
35.G. L. Barnes, S. M. Squires, and E. L. Sibert, J. Phys. Chem. B 112, 595 (2008).
http://dx.doi.org/10.1021/jp075376e
36.
36.G. Hanna and E. Geva, J. Phys. Chem. B 115, 5191 (2011).
http://dx.doi.org/10.1021/jp1061495
37.
37.M. B. Dawadi and D. S. Perry, J. Chem. Phys. 140, 161101 (2014).
http://dx.doi.org/10.1063/1.4871657
38.
38.B. P. Thapaliya, M. B. Dawadi, C. Ziegler, and D. S. Perry, Chem. Phys. (2015).
http://dx.doi.org/10.1016/j.chemphys.2015.07.017
39.
39.M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson et al., gaussian 09 Revision A.1, Gaussian, Inc., Wallingford, CT, 2009.
40.
40.X.-G. Wang and T. Carrington, J. Chem. Phys. A 105, 2575 (2001).
http://dx.doi.org/10.1021/jp003792s
41.
41.D. T. Colbert and W. H. Miller, J. Chem. Phys. 96, 1982 (1992).
http://dx.doi.org/10.1063/1.462100
42.
42. Q2 represents a linear translation with a kinetic energy operator , whose DVR representation is given by Eq. (A6) of Ref. 41. On the other hand, Q1 and Q3 are linear combinations of rotations of the two molecules (Fig. 1). Since we consider only 1D rotations due to restricting the problem to modes that stay in the plane of the complex, the corresponding kinetic energy operator remains simple with (where αi are the rotation angles of the two molecules). In principle, a DVR exists for that operator that takes its periodicity into account.41 Since we, however, combine two angles with different scaling factors into one mode (so that their linearisations for small displacements reveal the corresponding normal mode coordinates), the overall coordinates Q1 and Q3 are no longer periodic. We therefore use Eq. (A6) of Ref. 41 for the angle coordinates as well. Since the maximum rotation in the considered region is still significantly smaller than 2π, that approximation appears to be acceptable.
43.
43.P. Jungwirth and R. B. Gerber, Chem. Rev. 99, 1583 (1999).
http://dx.doi.org/10.1021/cr9800210
44.
44.J. O. Jung and R. B. Gerber, J. Chem. Phys. 105, 10332 (1996).
http://dx.doi.org/10.1063/1.472960
45.
45. Apart from convergence issues, it is in fact irrelevant for both the adiabatic and the diabatic representation whether or not the minimum energy positions in Eq. (10) are considered (discarding them actually leads to slightly better convergence with respect to basis size). On the other hand, for the numerically exact time-propagation, it is mandatory to expand Eq. (10) and to consider the minimum energy positions explicitly. We have found that it is the variation of the minimum energy positions as a function of inter-molecular coordinates Q that dominates the non-adiabtic couplings between the excited states to the bend fundamental and the ground state.
46.
46.H. Tal-Etzer and R. Kosloff, J. Chem. Phys. 81, 3967 (1984).
http://dx.doi.org/10.1063/1.448136
47.
47.H. Köppel, W. Domcke, and L. S. Cederbaum, Adv. Chem. Phys. 57, 59 (1984).
http://dx.doi.org/10.1002/9780470142813.ch2
48.
48.W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C (Cambridge University Press, Cambridge, 1992).
49.
49.A. H. Zewail, J. Phys. Chem. A 104, 5660 (2000).
http://dx.doi.org/10.1021/jp001460h
50.
50.J. C. Deàk, S. T. Rhea, L. K. Iwaki, and D. D. Dlott, J. Phys. Chem. A 104, 4866 (2000).
http://dx.doi.org/10.1021/jp994492h
51.
51.S. Ashihara, N. Huse, A. Espagne, E. Nibbering, and T. Elsaesser, Chem. Phys. Lett. 424, 66 (2006).
http://dx.doi.org/10.1016/j.cplett.2006.04.051
52.
52.A. M. Dokter and H. J. Bakker, J. Chem. Phys. 128, 024502 (2008).
http://dx.doi.org/10.1063/1.2820765
53.
53.L. De Marco, K. Ramasesha, and A. Tokmakoff, J. Phys. Chem. B 117, 15319 (2013).
http://dx.doi.org/10.1021/jp4034613
54.
54.G. Stock, R. Schneider, and W. Domcke, J. Chem. Phys. 90, 7184 (1989).
http://dx.doi.org/10.1063/1.456248
55.
55.W. Domcke and G. Stock, Adv. Chem. Phys. 100, 1 (1997).
http://dx.doi.org/10.1002/9780470141595.ch1
56.
56.D. J. Nesbitt and R. W. Field, J. Phys. Chem. 100, 12735 (1996).
http://dx.doi.org/10.1021/jp960698w
57.
57.J. D. Pitts and J. L. Knee, J. Chem. Phys. 109, 7113 (1998).
http://dx.doi.org/10.1063/1.477395
58.
58.J. D. Pitts and J. L. Knee, J. Chem. Phys. 110, 3389 (1999).
http://dx.doi.org/10.1063/1.478205
59.
59.G. Stock, J. Chem. Phys. 101, 246 (1994).
http://dx.doi.org/10.1063/1.468176
60.
60.Multidimensional Quantum Dynamics, edited by H. D. Meyer, F. Gatti, and G. A. Worth (Willey-VCH, Weinheim, 2009).
61.
61.J. Stenger, D. Madsen, P. Hamm, E. T. J. Nibbering, and T. Elsaesser, Phys. Rev. Lett. 87, 027401 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.027401
62.
62.R. Englman and J. Jortner, Mol. Phys. 16, 145 (1970).
http://dx.doi.org/10.1080/00268977000100171
63.
63.Y.-I. Suzuki, T. Fuji, T. Horio, and T. Suzuki, J. Chem. Phys. 132, 174302 (2010).
http://dx.doi.org/10.1063/1.3395206
http://aip.metastore.ingenta.com/content/aip/journal/jcp/143/13/10.1063/1.4932189
Loading
/content/aip/journal/jcp/143/13/10.1063/1.4932189
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/143/13/10.1063/1.4932189
2015-10-07
2016-12-06

Abstract

Based on extensive calculations and the time-propagation of the nuclear Schrödinger equation, we study the vibrational relaxation dynamics and resulting spectral signatures of the OH stretch vibration of a hydrogen-bonded complex, HCO . Despite their smallness, it has been shown experimentally by Johnson and coworkers that the gas-phase infrared spectra of these types of complexes exhibit much of the complexity commonly observed for hydrogen-bonded systems. That is, the OH stretch band exhibits a significant red shift together with an extreme broadening and a pronounced substructure, which reflects its very strong anharmonicity. Employing an adiabatic separation of time scales between the three intramolecular high-frequency modes of the water molecule and the three most important intermolecular low-frequency modes of the complex, we calculate potential energy surfaces (PESs) of the ground and the first excited states of the high-frequency modes and identify a vibrational conical intersection between the PESs of the OH stretch fundamental and the HOH bend overtone. By performing a time-dependent propagation of the resulting system, we show that the conical intersection affects a coherent population transfer between the two states, the first step of which being ultrafast (60 fs) and irreversible. The subsequent relaxation of vibrational energy into the HOH bend and ground state occurs incoherently but also quite fast (1 ps), although the corresponding PESs are well separated in energy. Owing to the smaller effective mass difference between light and heavy degrees of freedom, the adiabatic ansatz is consequently less significant for vibrations than in the electronic case. Based on the model, we consider several approximations to calculate the measured Ar-tag action spectrum of HCO and achieve semiquantitative agreement with the experiment.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/143/13/1.4932189.html;jsessionid=IUo-0UwBBnEz891bb4_KSylj.x-aip-live-03?itemId=/content/aip/journal/jcp/143/13/10.1063/1.4932189&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/143/13/10.1063/1.4932189&pageURL=http://scitation.aip.org/content/aip/journal/jcp/143/13/10.1063/1.4932189'
Right1,Right2,Right3,