Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/143/14/10.1063/1.4932679
1.
1.D. F. Sanders, Z. P. Smith, R. Guo, L. M. Robeson, J. E. Mcgrath, D. R. Paul, and B. D. Freeman, Polymer 54, 4729 (2013).
http://dx.doi.org/10.1016/j.polymer.2013.05.075
2.
2.B. J. Blaiszik, S. L. B. Kramer, S. C. Olugebefola, J. S. Moore, N. R. Sottos, and S. R. White, Annu. Rev. Mater. Res. 40, 179 (2010).
http://dx.doi.org/10.1146/annurev-matsci-070909-104532
3.
3.G. M. Geise, H.-S. Lee, D. J. Miller, B. D. Freeman, J. E. Mcgrath, and D. R. Paul, J. Polym. Sci., Part B: Polym. Phys. 48, 1685 (2010).
http://dx.doi.org/10.1002/polb.22037
4.
4.J. N. Ryan and M. Elimelech, Colloids Surf., A 107, 1 (1996).
http://dx.doi.org/10.1016/0927-7757(95)03384-X
5.
5.M. T. Cicerone, F. R. Blackburn, and M. D. Ediger, J. Chem. Phys. 102, 471 (1995).
http://dx.doi.org/10.1063/1.469425
6.
6.R. Zangi, S. A. Mackowiak, and L. J. Kaufman, J. Chem. Phys. 126, 104501 (2007).
http://dx.doi.org/10.1063/1.2434969
7.
7.K. Paeng, H. Park, D. T. Hoang, and L. J. Kaufman, Proc. Natl. Acad. Sci. U. S. A. 112, 4952 (2015).
http://dx.doi.org/10.1073/pnas.1424636112
8.
8.A. A. Gusev, F. Muller-Plathe, W. F. van Gunsteren, and U. W. Suter, Adv. Polym. Sci. 116, 207 (1994).
http://dx.doi.org/10.1007/bfb0080200
9.
9.D. N. Theodorou, “Principles of molecular simulation of gas transport in polymers,” inMaterials Science of Membranes for Gas and Vapor Separation, edited by Yu. Yampolskii, I. Pinnau, and B. D. Freeman (Wiley, Hoboken, NJ, 2006), pp. 4994.
10.
10.A. A. Gusev and U. W. Suter, J. Chem. Phys. 99, 2228 (1993).
http://dx.doi.org/10.1063/1.466198
11.
11.A. A. Gray-Weale, R. H. Henchman, R. G. Gilbert, M. L. Greenfield, and D. N. Theodorou, Macromolecules 30, 7296 (1997).
http://dx.doi.org/10.1021/ma970349f
12.
12.U. Yamamoto and K. S. Schweizer, J. Chem. Phys. 135, 224902 (2011).
http://dx.doi.org/10.1063/1.3664863
13.
13.J. T. Kalathi, U. Yamamoto, K. S. Schweizer, G. S. Grest, and S. K. Kumar, Phys. Rev. Lett. 112, 108301 (2014).
http://dx.doi.org/10.1103/PhysRevLett.112.108301
14.
14.Z. E. Dell and K. S. Schweizer, Macromolecules 47, 405 (2014).
http://dx.doi.org/10.1021/ma4021455
15.
15.S. Mirigian and K. S. Schweizer, J. Phys. Chem. Lett. 4, 3648 (2013).
http://dx.doi.org/10.1021/jz4018943
16.
16.S. Mirigian and K. S. Schweizer, J. Chem. Phys. 140, 194506 (2014).
http://dx.doi.org/10.1063/1.4874842
17.
17.S. Mirigian and K. S. Schweizer, J. Chem. Phys. 140, 194507 (2014).
http://dx.doi.org/10.1063/1.4874843
18.
18.T. R. Kirkpartick and P. G. Wolynes, Phys. Rev. A 35, 3072 (1987).
http://dx.doi.org/10.1103/physreva.35.3072
19.
19.J.-P. Hansen and I. R. McDonald, Theory of Simple Liquids (Academic Press, London, 1986).
20.
20.K. S. Schweizer and E. J. Saltzman, J. Chem. Phys. 119, 1181 (2003).
http://dx.doi.org/10.1063/1.1578632
21.
21.K. S. Schweizer, J. Chem. Phys. 123, 244501 (2005).
http://dx.doi.org/10.1063/1.2137701
22.
22.R. Verberg, I. M. de Schepper, and E. G. D. Cohen, Phys. Rev. E 55, 3143 (1997).
http://dx.doi.org/10.1103/PhysRevE.55.3143
23.
23.E. G. D. Cohen, R. Verberg, and I. M. de Schepper, Physica A 251, 251 (1998).
http://dx.doi.org/10.1016/S0378-4371(97)00609-2
24.
24.R. Jadrich and K. S. Schweizer, J. Chem. Phys. 139, 054502 (2013).
http://dx.doi.org/10.1063/1.4816276
25.
25.R. Zwanzig, Nonequilibrium Statistical Mechanics (Oxford University Press, Oxford, 2001).
26.
26.S. G. J. M. Kluijtmans and A. P. Philipse, Langmuir 15, 1896 (1999).
http://dx.doi.org/10.1021/la9813275
27.
27.J. Guan, B. Wang, and S. Granick, ACS Nano 8, 3331 (2014).
http://dx.doi.org/10.1021/nn405476t
28.
28.S. Chapman and T. Cowling, The Mathematical Theory of Non-Uniform Gases, 3rd ed. (Cambridge University Press, Cambridge, 1970).
29.
29.L. Xi, M. Shah, and B. L. Trout, J. Phys. Chem. B 117, 3634 (2013).
http://dx.doi.org/10.1021/jp3099973
30.
30.I. Y. Wong, M. L. Gardel, D. R. Reichman, E. R. Weeks, M. T. Valentine, A. R. Bausch, and D. A. Weitz, Phys. Rev. Lett. 92, 178101 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.178101
31.
31.V. N. Novikov, K. S. Schweizer, and A. P. Sokolov, J. Chem. Phys. 138, 164508 (2013).
http://dx.doi.org/10.1063/1.4802771
32.
32.J. Colmenero, F. Alvarez, Y. Khairy, and A. Arbe, J. Chem. Phys. 139, 044906 (2013).
http://dx.doi.org/10.1063/1.4816127
33.
33.E. J. Saltzman and K. S. Schweizer, Phys. Rev. E 74, 061501 (2006).
http://dx.doi.org/10.1103/PhysRevE.74.061501
34.
34.K. S. Schweizer and G. Yatsenko, J. Chem. Phys. 127, 164505 (2007).
http://dx.doi.org/10.1063/1.2780861
35.
35.M. Lohfink and H. Sillescu, AIP Conf. Proc. 256, 30 (1992).
http://dx.doi.org/10.1063/1.42374
36.
36.M. K. Mapes, S. F. Swallen, and M. D. Ediger, J. Phys. Chem. B 110, 507 (2006).
http://dx.doi.org/10.1021/jp0555955
37.
37.A. Tölle, Rep. Prog. Phys. 64, 1473 (2001).
http://dx.doi.org/10.1088/0034-4885/64/11/203
38.
38.S. F. Swallen, M. K. Mapes, Y. S. Kim, R. J. McMahon, and M. D. Ediger, J. Chem. Phys. 124, 184501 (2006).
http://dx.doi.org/10.1063/1.2191492
39.
39.J. Wiedersich, N. V. Surovtsev, and E. Rössler, J. Chem. Phys. 113, 1143 (2000).
http://dx.doi.org/10.1063/1.481920
40.
40.R. D. Goodwin, J. Phys. Chem. Ref. Data 16, 800 (1987).
http://dx.doi.org/10.1063/1.555786
41.
41.J. Matthiesen, R. S. Smith, and B. D. Kay, J. Chem. Phys. 133, 174505 (2010).
http://dx.doi.org/10.1063/1.3497648
42.
42.R. A. May, R. S. Smith, and B. D. Kay, J. Phys. Chem. A 117, 11881 (2013).
http://dx.doi.org/10.1021/jp403093e
43.
43.D. V. Matyushov and R. Schmid, J. Chem. Phys. 104, 8627 (1996).
http://dx.doi.org/10.1063/1.471551
44.
44.M. T. Cicerone and M. D. Ediger, J. Chem. Phys. 104, 7210 (1996).
http://dx.doi.org/10.1063/1.471433
45.
45.F. R. Blackburn, C.-Y. Wang, and M. D. Ediger, J. Phys. Chem. 100, 18249 (1996).
http://dx.doi.org/10.1021/jp9622041
46.
46.S. Mirigian and K. S. Schweizer, Macromolecules 48, 1901 (2015).
http://dx.doi.org/10.1021/ma5022083
http://aip.metastore.ingenta.com/content/aip/journal/jcp/143/14/10.1063/1.4932679
Loading
/content/aip/journal/jcp/143/14/10.1063/1.4932679
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/143/14/10.1063/1.4932679
2015-10-13
2016-12-11

Abstract

We heuristically formulate a microscopic, force level, self-consistent nonlinear Langevin equation theory for activated barrier hopping and non-hydrodynamic diffusion of a hard sphere penetrant in very dense hard sphere fluid matrices. Penetrant dynamics is controlled by a rich competition between force relaxation due to penetrant self-motion and collective matrix structural (alpha) relaxation. In the absence of penetrant-matrix attraction, three activated dynamical regimes are predicted as a function of penetrant-matrix size ratio which are physically distinguished by penetrant jump distance and the nature of matrix motion required to facilitate its hopping. The penetrant diffusion constant decreases the fastest with size ratio for relatively small penetrants where the matrix effectively acts as a vibrating amorphous solid. Increasing penetrant-matrix attraction strength reduces penetrant diffusivity due to physical bonding. For size ratios approaching unity, a distinct dynamical regime emerges associated with strong slaving of penetrant hopping to matrix structural relaxation. A crossover regime at intermediate penetrant-matrix size ratio connects the two limiting behaviors for hard penetrants, but essentially disappears if there are strong attractions with the matrix. Activated penetrant diffusivity decreases strongly with matrix volume fraction in a manner that intensifies as the size ratio increases. We propose and implement a quasi-universal approach for activated diffusion of a rigid atomic/molecular penetrant in a supercooled liquid based on a mapping between the hard sphere system and thermal liquids. Calculations for specific systems agree reasonably well with experiments over a wide range of temperature, covering more than 10 orders of magnitude of variation of the penetrant diffusion constant.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/143/14/1.4932679.html;jsessionid=pSzcloJx6mGkB7nUQda5w6Is.x-aip-live-03?itemId=/content/aip/journal/jcp/143/14/10.1063/1.4932679&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/143/14/10.1063/1.4932679&pageURL=http://scitation.aip.org/content/aip/journal/jcp/143/14/10.1063/1.4932679'
Right1,Right2,Right3,