Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.D. F. Sanders, Z. P. Smith, R. Guo, L. M. Robeson, J. E. Mcgrath, D. R. Paul, and B. D. Freeman, Polymer 54, 4729 (2013).
2.B. J. Blaiszik, S. L. B. Kramer, S. C. Olugebefola, J. S. Moore, N. R. Sottos, and S. R. White, Annu. Rev. Mater. Res. 40, 179 (2010).
3.G. M. Geise, H.-S. Lee, D. J. Miller, B. D. Freeman, J. E. Mcgrath, and D. R. Paul, J. Polym. Sci., Part B: Polym. Phys. 48, 1685 (2010).
4.J. N. Ryan and M. Elimelech, Colloids Surf., A 107, 1 (1996).
5.M. T. Cicerone, F. R. Blackburn, and M. D. Ediger, J. Chem. Phys. 102, 471 (1995).
6.R. Zangi, S. A. Mackowiak, and L. J. Kaufman, J. Chem. Phys. 126, 104501 (2007).
7.K. Paeng, H. Park, D. T. Hoang, and L. J. Kaufman, Proc. Natl. Acad. Sci. U. S. A. 112, 4952 (2015).
8.A. A. Gusev, F. Muller-Plathe, W. F. van Gunsteren, and U. W. Suter, Adv. Polym. Sci. 116, 207 (1994).
9.D. N. Theodorou, “Principles of molecular simulation of gas transport in polymers,” inMaterials Science of Membranes for Gas and Vapor Separation, edited by Yu. Yampolskii, I. Pinnau, and B. D. Freeman (Wiley, Hoboken, NJ, 2006), pp. 4994.
10.A. A. Gusev and U. W. Suter, J. Chem. Phys. 99, 2228 (1993).
11.A. A. Gray-Weale, R. H. Henchman, R. G. Gilbert, M. L. Greenfield, and D. N. Theodorou, Macromolecules 30, 7296 (1997).
12.U. Yamamoto and K. S. Schweizer, J. Chem. Phys. 135, 224902 (2011).
13.J. T. Kalathi, U. Yamamoto, K. S. Schweizer, G. S. Grest, and S. K. Kumar, Phys. Rev. Lett. 112, 108301 (2014).
14.Z. E. Dell and K. S. Schweizer, Macromolecules 47, 405 (2014).
15.S. Mirigian and K. S. Schweizer, J. Phys. Chem. Lett. 4, 3648 (2013).
16.S. Mirigian and K. S. Schweizer, J. Chem. Phys. 140, 194506 (2014).
17.S. Mirigian and K. S. Schweizer, J. Chem. Phys. 140, 194507 (2014).
18.T. R. Kirkpartick and P. G. Wolynes, Phys. Rev. A 35, 3072 (1987).
19.J.-P. Hansen and I. R. McDonald, Theory of Simple Liquids (Academic Press, London, 1986).
20.K. S. Schweizer and E. J. Saltzman, J. Chem. Phys. 119, 1181 (2003).
21.K. S. Schweizer, J. Chem. Phys. 123, 244501 (2005).
22.R. Verberg, I. M. de Schepper, and E. G. D. Cohen, Phys. Rev. E 55, 3143 (1997).
23.E. G. D. Cohen, R. Verberg, and I. M. de Schepper, Physica A 251, 251 (1998).
24.R. Jadrich and K. S. Schweizer, J. Chem. Phys. 139, 054502 (2013).
25.R. Zwanzig, Nonequilibrium Statistical Mechanics (Oxford University Press, Oxford, 2001).
26.S. G. J. M. Kluijtmans and A. P. Philipse, Langmuir 15, 1896 (1999).
27.J. Guan, B. Wang, and S. Granick, ACS Nano 8, 3331 (2014).
28.S. Chapman and T. Cowling, The Mathematical Theory of Non-Uniform Gases, 3rd ed. (Cambridge University Press, Cambridge, 1970).
29.L. Xi, M. Shah, and B. L. Trout, J. Phys. Chem. B 117, 3634 (2013).
30.I. Y. Wong, M. L. Gardel, D. R. Reichman, E. R. Weeks, M. T. Valentine, A. R. Bausch, and D. A. Weitz, Phys. Rev. Lett. 92, 178101 (2004).
31.V. N. Novikov, K. S. Schweizer, and A. P. Sokolov, J. Chem. Phys. 138, 164508 (2013).
32.J. Colmenero, F. Alvarez, Y. Khairy, and A. Arbe, J. Chem. Phys. 139, 044906 (2013).
33.E. J. Saltzman and K. S. Schweizer, Phys. Rev. E 74, 061501 (2006).
34.K. S. Schweizer and G. Yatsenko, J. Chem. Phys. 127, 164505 (2007).
35.M. Lohfink and H. Sillescu, AIP Conf. Proc. 256, 30 (1992).
36.M. K. Mapes, S. F. Swallen, and M. D. Ediger, J. Phys. Chem. B 110, 507 (2006).
37.A. Tölle, Rep. Prog. Phys. 64, 1473 (2001).
38.S. F. Swallen, M. K. Mapes, Y. S. Kim, R. J. McMahon, and M. D. Ediger, J. Chem. Phys. 124, 184501 (2006).
39.J. Wiedersich, N. V. Surovtsev, and E. Rössler, J. Chem. Phys. 113, 1143 (2000).
40.R. D. Goodwin, J. Phys. Chem. Ref. Data 16, 800 (1987).
41.J. Matthiesen, R. S. Smith, and B. D. Kay, J. Chem. Phys. 133, 174505 (2010).
42.R. A. May, R. S. Smith, and B. D. Kay, J. Phys. Chem. A 117, 11881 (2013).
43.D. V. Matyushov and R. Schmid, J. Chem. Phys. 104, 8627 (1996).
44.M. T. Cicerone and M. D. Ediger, J. Chem. Phys. 104, 7210 (1996).
45.F. R. Blackburn, C.-Y. Wang, and M. D. Ediger, J. Phys. Chem. 100, 18249 (1996).
46.S. Mirigian and K. S. Schweizer, Macromolecules 48, 1901 (2015).

Data & Media loading...


Article metrics loading...



We heuristically formulate a microscopic, force level, self-consistent nonlinear Langevin equation theory for activated barrier hopping and non-hydrodynamic diffusion of a hard sphere penetrant in very dense hard sphere fluid matrices. Penetrant dynamics is controlled by a rich competition between force relaxation due to penetrant self-motion and collective matrix structural (alpha) relaxation. In the absence of penetrant-matrix attraction, three activated dynamical regimes are predicted as a function of penetrant-matrix size ratio which are physically distinguished by penetrant jump distance and the nature of matrix motion required to facilitate its hopping. The penetrant diffusion constant decreases the fastest with size ratio for relatively small penetrants where the matrix effectively acts as a vibrating amorphous solid. Increasing penetrant-matrix attraction strength reduces penetrant diffusivity due to physical bonding. For size ratios approaching unity, a distinct dynamical regime emerges associated with strong slaving of penetrant hopping to matrix structural relaxation. A crossover regime at intermediate penetrant-matrix size ratio connects the two limiting behaviors for hard penetrants, but essentially disappears if there are strong attractions with the matrix. Activated penetrant diffusivity decreases strongly with matrix volume fraction in a manner that intensifies as the size ratio increases. We propose and implement a quasi-universal approach for activated diffusion of a rigid atomic/molecular penetrant in a supercooled liquid based on a mapping between the hard sphere system and thermal liquids. Calculations for specific systems agree reasonably well with experiments over a wide range of temperature, covering more than 10 orders of magnitude of variation of the penetrant diffusion constant.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd