Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/143/14/10.1063/1.4933049
1.
1.J. C. Tully and R. K. Preston, J. Chem. Phys. 55, 562 (1971).
http://dx.doi.org/10.1063/1.1675788
2.
2.J. C. Tully, J. Chem. Phys. 93, 1061 (1990).
http://dx.doi.org/10.1063/1.459170
3.
3.J. C. Tully, J. Chem. Phys. 137, 22A301 (2012).
http://dx.doi.org/10.1063/1.4757762
4.
4.J. E. Subotnik and N. Shenvi, J. Chem. Phys. 134, 024105 (2011).
http://dx.doi.org/10.1063/1.3506779
5.
5.B. R. Landry and J. E. Subotnik, J. Chem. Phys. 135, 191101 (2011).
http://dx.doi.org/10.1063/1.3663870
6.
6.T. Nelson, S. Fernandez-Alberti, A. E. Roitberg, and S. Tretiak, J. Chem. Phys. 138, 224111 (2013).
http://dx.doi.org/10.1063/1.4809568
7.
7.X. Sun and W. H. Miller, J. Chem. Phys. 106, 6346 (1997).
http://dx.doi.org/10.1063/1.473624
8.
8.S. Xiong, H. Wang, and W. H. Miller, J. Chem. Phys. 109, 7064 (1998).
http://dx.doi.org/10.1063/1.477389
9.
9.X. Sun and W. H. Miller, J. Chem. Phys. 110, 6635 (1999).
http://dx.doi.org/10.1063/1.478571
10.
10.W. H. Miller, J. Phys. Chem. A 105, 2942 (2001).
http://dx.doi.org/10.1021/jp003712k
11.
11.J. M. Moix and E. Pollak, J. Chem. Phys. 129, 064515 (2008).
http://dx.doi.org/10.1063/1.2965884
12.
12.C. C. Martens and J. Y. Fang, J. Chem. Phys. 106, 4918 (1997).
http://dx.doi.org/10.1063/1.473541
13.
13.A. Donoso and C. C. Martens, J. Phys. Chem. A 102, 4291 (1998).
http://dx.doi.org/10.1021/jp980219o
14.
14.A. Donoso and C. C. Martens, J. Chem. Phys. 112, 3980 (2000).
http://dx.doi.org/10.1063/1.480948
15.
15.A. Donoso, D. Kohen, and C. C. Martens, J. Chem. Phys. 112, 7345 (2000).
http://dx.doi.org/10.1063/1.481333
16.
16.A. Donoso and C. C. Martens, Int. J. Quantum Chem. 87, 1348 (2002).
http://dx.doi.org/10.1002/qua.10377
17.
17.R. Kapral and G. Ciccotti, J. Chem. Phys. 110, 8919 (1999).
http://dx.doi.org/10.1063/1.478811
18.
18.R. Kapral, J. Phys. Chem. A 105, 2885 (2001).
http://dx.doi.org/10.1021/jp0037899
19.
19.D. M. Kernan, G. Ciccotti, and R. Kapral, J. Chem. Phys. 116, 2346 (2002).
http://dx.doi.org/10.1063/1.1433502
20.
20.G. Hanna and R. Kapral, Acc. Chem. Res. 39, 21 (2006).
http://dx.doi.org/10.1021/ar030281q
21.
21.N. Shenvi, J. E. Subotnik, and W. Yang, J. Chem. Phys. 134, 144102 (2011).
http://dx.doi.org/10.1063/1.3575588
22.
22.A. Donoso and C. C. Martens, Phys. Rev. Lett. 87, 223202 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.223202
23.
23.A. Donoso, Y. Zheng, and C. C. Martens, J. Chem. Phys. 119, 5010 (2003).
http://dx.doi.org/10.1063/1.1597496
24.
24.S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University Press, Oxford, 1995).
25.
25.P. Hogan, A. V. Wart, A. Donoso, and C. C. Martens, Chem. Phys. 370, 20 (2010).
http://dx.doi.org/10.1016/j.chemphys.2009.12.023
26.
26.E. P. Wigner, Phys. Rev. 40, 749 (1932).
http://dx.doi.org/10.1103/PhysRev.40.749
27.
27.M. Hillery, R. F. O’Connell, M. O. Scully, and E. P. Wigner, Phys. Rep. 106, 12 (1984).
http://dx.doi.org/10.1016/0370-1573(84)90160-1
28.
28.C. C. Martens, J. Chem. Phys. 133, 241101 (2010).
http://dx.doi.org/10.1063/1.3507870
29.
29.C. C. Martens, J. Chem. Phys. 139, 024109 (2013).
http://dx.doi.org/10.1063/1.4811219
http://aip.metastore.ingenta.com/content/aip/journal/jcp/143/14/10.1063/1.4933049
Loading
/content/aip/journal/jcp/143/14/10.1063/1.4933049
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/143/14/10.1063/1.4933049
2015-10-09
2016-12-08

Abstract

In this paper, we describe a new and fully coherent stochastic surface hopping method for simulating mixed quantum-classical systems. We illustrate the approach on the simple but unforgiving problem of quantum evolution of a two-state quantum system in the limit of unperturbed pure state dynamics and for dissipative evolution in the presence of both stationary and nonstationary random environments. We formulate our approach in the Liouville representation and describe the density matrix elements by ensembles of trajectories. Population dynamics are represented by stochastic surface hops for trajectories representing diagonal density matrix elements. These are combined with an unconventional coherent stochastic hopping algorithm for trajectories representing off-diagonal quantum coherences. The latter generalizes the binary (0,1) “probability” of a trajectory to be associated with a given state to allow integers that can be negative or greater than unity in magnitude. Unlike existing surface hopping methods, the dynamics of the ensembles are fully entangled, correctly capturing the coherent and nonlocal structure of quantum mechanics.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/143/14/1.4933049.html;jsessionid=Saj8dFVmyOpIMdEwh9PRf3J0.x-aip-live-03?itemId=/content/aip/journal/jcp/143/14/10.1063/1.4933049&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/143/14/10.1063/1.4933049&pageURL=http://scitation.aip.org/content/aip/journal/jcp/143/14/10.1063/1.4933049'
Right1,Right2,Right3,