Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.A. K. Cheetham and D. A. O. Hope, “Magnetic ordering and exchange effects in the antiferromagnetic solid solutions MnxNi1−xO,” Phys. Rev. B 27(11), 69646967 (1983).
2.N. F. Mott, “The basis of the electron theory of metals, with special reference to the transition metals,” Proc. Phys. Soc., Sect. A 62(7), 416 (1949).
3.G. A. Sawatzky and J. W. Allen, “Magnitude and origin of the band Gap in NiO,” Phys. Rev. Lett. 53(24), 23392342 (1984).
4.J. Hubbard, “Electron correlations in narrow energy bands. III. An improved solution,” Proc. R. Soc. A 281(1386), 401419 (1964).
5.J. Hubbard, “Electron correlations in narrow energy bands. II. The degenerate band case,” Proc. R. Soc. A 277(1369), 237259 (1964).
6.J. Zaanen, G. A. Sawatzky, and J. W. Allen, “Band gaps and electronic structure of transition-metal compounds,” Phys. Rev. Lett. 55(4), 418421 (1985).
7.V. I. Anisimov, J. Zaanen, and O. K. Andersen, “Band theory and Mott insulators: Hubbard U instead of Stoner I,” Phys. Rev. B 44(3), 943954 (1991).
8.S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, “Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study,” Phys. Rev. B 57(3), 15051509 (1998).
9.A. Svane and O. Gunnarsson, “Transition-metal oxides in the self-interaction-corrected density-functional formalism,” Phys. Rev. Lett. 65(9), 11481151 (1990).
10.R. Gillen and J. Robertson, “Accurate screened exchange band structures for the transition metal monoxides MnO, FeO, CoO and NiO,” J. Phys.: Condens. Matter 25(16), 165502 (2013).
11.F. Aryasetiawan and O. Gunnarsson, “Electronic structure of NiO in the GW approximation,” Phys. Rev. Lett. 74(16), 32213224 (1995).
12.S. Massidda, A. Continenza, M. Posternak, and A. Baldereschi, “Quasiparticle energy bands of transition-metal oxides within a model GW scheme,” Phys. Rev. B 55(20), 1349413502 (1997).
13.S. V. Faleev, M. van Schilfgaarde, and T. Kotani, “All-electron self-consistent GW Approximation: Application to Si, MnO, and NiO,” Phys. Rev. Lett. 93(12), 126406 (2004).
14.J.-L. Li, G.-M. Rignanese, and S. G. Louie, “Quasiparticle energy bands of NiO in the GW approximation,” Phys. Rev. B 71(19), 193102 (2005).
15.H. Jiang, R. I. Gomez-Abal, P. Rinke, and M. Scheffler, “First-principles modeling of localized d states with the GW@LDA+U approach,” Phys. Rev. B 82(4), 045108 (2010).
16.C. Rödl, F. Fuchs, J. Furthmüller, and F. Bechstedt, “Quasiparticle band structures of the antiferromagnetic transition-metal oxides MnO, FeO, CoO, and NiO,” Phys. Rev. B 79(23), 235114 (2009).
17.S. Das, J. E. Coulter, and E. Manousakis, “Convergence of quasiparticle self-consistent GW calculations of transition-metal monoxides,” Phys. Rev. B 91(11), 115105 (2015).
18.V. I. Anisimov, P. Kuiper, and J. Nordgren, “First-principles calculation of NiO valence spectra in the impurity-Anderson-model approximation,” Phys. Rev. B 50(12), 82578265 (1994).
19.S. Y. Savrasov and G. Kotliar, “Linear response calculations of lattice dynamics in strongly correlated systems,” Phys. Rev. Lett. 90(5), 056401 (2003).
20.J. Kuneš, V. I. Anisimov, S. L. Skornyakov, A. V. Lukoyanov, and D. Vollhardt, “NiO: Correlated band structure of a charge-transfer insulator,” Phys. Rev. Lett. 99(15), 156404 (2007).
21.X. Ren, I. Leonov, G. Keller, M. Kollar, I. Nekrasov, and D. Vollhardt, “LDA+DMFT computation of the electronic spectrum of NiO,” Phys. Rev. B 74(19), 195114 (2006).
22.B. E. F. Fender, A. J. Jacobson, and F. A. Wedgwood, “Covalency parameters in MnO, α-MnS, and NiO,” J. Chem. Phys. 48(3), 990994 (1968).
23.A. Fujimori, F. Minami, and S. Sugano, “Multielectron satellites and spin polarization in photoemission from Ni compounds,” Phys. Rev. B 29(9), 52255227 (1984).
24.Y. H. Kwon, S. H. Chun, J.-H. Han, and H. K. Cho, “Correlation between electrical properties and point defects in NiO thin films,” Met. Mater. Int. 18(6), 10031007 (2012).
25.W.-L. Jang, Y.-M. Lu, W.-S. Hwang, T.-L. Hsiung, and H. P. Wang, “Point defects in sputtered NiO films,” Appl. Phys. Lett. 94(6), 062103 (2009).
26.J. Szuber, “Use of thermionic emission for studying of point defects in NiO single crystals,” J. Mater. Sci. 19(6), 19911996 (1984).
27.S. Seo, M. J. Lee, D. H. Seo, E. J. Jeoung, D.-S. Suh, Y. S. Joung, I. K. Yoo, I. R. Hwang, S. H. Kim, I. S. Byun, J.-S. Kim, J. S. Choi, and B. H. Park, “Reproducible resistance switching in polycrystalline NiO films,” Appl. Phys. Lett. 85(23), 56555657 (2004).
28.S. Park, H.-S. Ahn, C.-K. Lee, H. Kim, H. Jin, H.-S. Lee, S. Seo, J. Yu, and S. Han, “Interaction and ordering of vacancy defects in NiO,” Phys. Rev. B 77(13), 134103 (2008).
29.W. M. C. Foulkes, L. Mitas, R. J. Needs, and G. Rajagopal, “Quantum Monte Carlo simulations of solids,” Rev. Mod. Phys. 73(1), 3383 (2001).
30.R. J. Needs, M. D. Towler, N. D. Drummond, and P. L. Ríos, “Continuum variational and diffusion quantum Monte Carlo calculations,” J. Phys.: Condens. Matter 22(2), 023201 (2010).
31.K. Foyevtsova, J. T. Krogel, J. Kim, P. R. C. Kent, E. Dagotto, and F. A. Reboredo, “Ab initio quantum Monte Carlo calculations of spin superexchange in cuprates: The benchmarking case of Ca2CuO3,” Phys. Rev. X 4(3), 031003 (2014).
32.L. Shulenburger and T. R. Mattsson, “Quantum Monte Carlo applied to solids,” Phys. Rev. B 88(24), 245117 (2013).
33.C. Lin, F. H. Zong, and D. M. Ceperley, “Twist-averaged boundary conditions in continuum quantum Monte Carlo algorithms,” Phys. Rev. E 64(1), 016702 (2001).
34.J. A. Santana, J. T. Krogel, J. Kim, P. R. C. Kent, and F. A. Reboredo, “Structural stability and defect energetics of ZnO from diffusion quantum Monte Carlo,” J. Chem. Phys. 142(16), 164705 (2015).
35.A. J. Williamson, R. Q. Hood, R. J. Needs, and G. Rajagopal, “Diffusion quantum Monte Carlo calculations of the excited states of silicon,” Phys. Rev. B 57(19), 1214012144 (1998).
36.R. J. Needs, P. R. C. Kent, A. R. Porter, M. D. Towler, and G. Rajagopal, “Quantum Monte Carlo calculations for ground and excited states,” Int. J. Quantum Chem. 86(2), 218225 (2002).
37.S. Tanaka, “Cohesive energy of NiO: A quantum Monte Carlo approach,” J. Phys. Soc. Jpn. 62(6), 21122119 (1993).
38.R. J. Needs and M. D. Towler, “The diffusion quantum Monte Carlo method: Designing trial wave functions for NiO,” Int. J. Mod. Phys. B 17(28), 54255434 (2003).
39.P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. D. Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, “QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials,” J. Phys.: Condens. Matter 21(39), 395502 (2009).
40.D. M. Ceperley and B. J. Alder, “Ground state of the electron gas by a stochastic method,” Phys. Rev. Lett. 45(7), 566569 (1980).
41.N. D. Drummond, R. J. Needs, A. Sorouri, and W. M. C. Foulkes, “Finite-size errors in continuum quantum Monte Carlo calculations,” Phys. Rev. B 78(12), 125106 (2008).
42.L. M. Fraser, W. M. C. Foulkes, G. Rajagopal, R. J. Needs, S. D. Kenny, and A. J. Williamson, “Finite-size effects and Coulomb interactions in quantum Monte Carlo calculations for homogeneous systems with periodic boundary conditions,” Phys. Rev. B 53(4), 18141832 (1996).
43.A. J. Williamson, G. Rajagopal, R. J. Needs, L. M. Fraser, W. M. C. Foulkes, Y. Wang, and M.-Y. Chou, “Elimination of Coulomb finite-size effects in quantum many-body simulations,” Phys. Rev. B 55(8), R4851R4854 (1997).
44.D. R. Hamann, M. Schlüter, and C. Chiang, “Norm-conserving pseudopotentials,” Phys. Rev. Lett. 43(20), 14941497 (1979).
45.See for Opium–pseudopotential generation project.
46.A. M. Rappe, K. M. Rabe, E. Kaxiras, and J. D. Joannopoulos, “Optimized pseudopotentials,” Phys. Rev. B 41(2), 12271230 (1990).
47.J. T. Krogel, J. A. Santana, and F. A. Reboredo, “Pseudopotentials for quantum Monte Carlo studies of transition metal oxides,” Phys. Rev. B (to be published).
48.See for QMCPACK code.
49.J. T. Krogel, “Nexus: A modular workflow management system for quantum simulation codes,” Comput. Phys. Commun. (published online 2015).
50.M. Casula, “Beyond the locality approximation in the standard diffusion Monte Carlo method,” Phys. Rev. B 74(16), 161102 (2006).
51.K. Terakura, T. Oguchi, A. R. Williams, and J. Kübler, “Band theory of insulating transition-metal monoxides: Band-structure calculations,” Phys. Rev. B 30(8), 47344747 (1984).
52.S. B. Zhang and J. E. Northrup, “Chemical potential dependence of defect formation energies in GaAs: Application to Ga self-diffusion,” Phys. Rev. Lett. 67(17), 23392342 (1991).
53.C. Freysoldt, B. Grabowski, T. Hickel, J. Neugebauer, G. Kresse, A. Janotti, and C. G. Van de Walle, “First-principles calculations for point defects in solids,” Rev. Mod. Phys. 86(1), 253305 (2014).
54.Collaboration: Authors and editors of the volumes III/17G-41D, “NiO: Lattice parameter, thermal expansion,” in Non-Tetrahedrally Bonded Binary Compounds II, edited byO. Madelung, U. Rössler, and M. Schulz (Springer-Verlag, Berlin, Heidelberg, 2000), Vol. 41D, pp. 14.
55.M. Leslie and N. J. Gillan, “The energy and elastic dipole tensor of defects in ionic crystals calculated by the supercell method,” J. Phys. C: Solid State Phys. 18(5), 973 (1985).
56.G. Makov and M. C. Payne, “Periodic boundary conditions in ab initio calculations,” Phys. Rev. B 51(7), 40144022 (1995).
57.F. Oba, A. Togo, I. Tanaka, J. Paier, and G. Kresse, “Defect energetics in ZnO: A hybrid Hartree-Fock density functional study,” Phys. Rev. B 77(24), 245202 (2008).
58.Collaboration: Authors and editors of the volumes III/17G-41D, “NiO: Optical properties, dielectric constants,” in Non-Tetrahedrally Bonded Binary Compounds II, edited byO. Madelung, U. Rössler, and M. Schulz (Springer-Verlag, Berlin, Heidelberg, 2000), Vol. 41D, pp. 114.
59.J. Heyd, G. E. Scuseria, and M. Ernzerhof, “Hybrid functionals based on a screened Coulomb potential,” J. Chem. Phys. 118(18), 82078215 (2003).
60.G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54(16), 1116911186 (1996).
61.G. Kresse and J. Hafner, “Ab initio molecular-dynamics simulation of the liquid-metal amorphous-semiconductor transition in germanium,” Phys. Rev. B 49(20), 1425114269 (1994).
62.P. E. Blöchl, “Projector augmented-wave method,” Phys. Rev. B 50(24), 1795317979 (1994).
63.F. D. Murnaghan, “The compressibility of media under extreme pressures,” Proc. Natl. Acad. Sci. 30(9), 244247 (1944).
64.Néel temperature,” Wikipedia, the free encyclopedia 18-Apr-2015.
65.D. R. Lide, CRC Handbook of Chemistry and Physics, 75th ed. (CRC Press, Boca Raton, 1995).
66.Z.-X. Shen, R. S. List, D. S. Dessau, B. O. Wells, O. Jepsen, A. J. Arko, R. Barttlet, C. K. Shih, F. Parmigiani, J. C. Huang, and P. A. P. Lindberg, “Electronic structure of NiO: Correlation and band effects,” Phys. Rev. B 44(8), 36043626 (1991).
67.J. P. Perdew and A. Zunger, “Self-interaction correction to density-functional approximations for many-electron systems,” Phys. Rev. B 23(10), 50485079 (1981).
68.J. A. Santana, J. T. Krogel, P. R. C. Kent, and F. A. Reboredo, “Diffusion quantum Monte Carlo calculations of SrFeO3 and LaFeO3” (unpublished).
69.S. Chiesa, D. M. Ceperley, R. M. Martin, and M. Holzmann, “Finite-size error in many-body simulations with long-range interactions,” Phys. Rev. Lett. 97(7), 076404 (2006).

Data & Media loading...


Article metrics loading...



We present a many-body diffusion quantum Monte Carlo (DMC) study of the bulk and defect properties of NiO. We find excellent agreement with experimental values, within 0.3%, 0.6%, and 3.5% for the lattice constant, cohesive energy, and bulk modulus, respectively. The quasiparticle bandgap was also computed, and the DMC result of 4.72 (0.17) eV compares well with the experimental value of 4.3 eV. Furthermore, DMC calculations of excited states at the L, Z, and the gamma point of the Brillouin zone reveal a flat upper valence band for NiO, in good agreement with Angle Resolved Photoemission Spectroscopy results. To study defect properties, we evaluated the formation energies of the neutral and charged vacancies of oxygen and nickel in NiO. A formation energy of 7.2 (0.15) eV was found for the oxygen vacancy under oxygen rich conditions. For the Ni vacancy, we obtained a formation energy of 3.2 (0.15) eV under Ni rich conditions. These results confirm that NiO occurs as a p-type material with the dominant intrinsic vacancy defect being Ni vacancy.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd