Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/143/16/10.1063/1.4934262
1.
1.A. K. Cheetham and D. A. O. Hope, “Magnetic ordering and exchange effects in the antiferromagnetic solid solutions MnxNi1−xO,” Phys. Rev. B 27(11), 69646967 (1983).
http://dx.doi.org/10.1103/PhysRevB.27.6964
2.
2.N. F. Mott, “The basis of the electron theory of metals, with special reference to the transition metals,” Proc. Phys. Soc., Sect. A 62(7), 416 (1949).
http://dx.doi.org/10.1088/0370-1298/62/7/303
3.
3.G. A. Sawatzky and J. W. Allen, “Magnitude and origin of the band Gap in NiO,” Phys. Rev. Lett. 53(24), 23392342 (1984).
http://dx.doi.org/10.1103/PhysRevLett.53.2339
4.
4.J. Hubbard, “Electron correlations in narrow energy bands. III. An improved solution,” Proc. R. Soc. A 281(1386), 401419 (1964).
http://dx.doi.org/10.1098/rspa.1964.0190
5.
5.J. Hubbard, “Electron correlations in narrow energy bands. II. The degenerate band case,” Proc. R. Soc. A 277(1369), 237259 (1964).
http://dx.doi.org/10.1098/rspa.1964.0019
6.
6.J. Zaanen, G. A. Sawatzky, and J. W. Allen, “Band gaps and electronic structure of transition-metal compounds,” Phys. Rev. Lett. 55(4), 418421 (1985).
http://dx.doi.org/10.1103/PhysRevLett.55.418
7.
7.V. I. Anisimov, J. Zaanen, and O. K. Andersen, “Band theory and Mott insulators: Hubbard U instead of Stoner I,” Phys. Rev. B 44(3), 943954 (1991).
http://dx.doi.org/10.1103/PhysRevB.44.943
8.
8.S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, “Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study,” Phys. Rev. B 57(3), 15051509 (1998).
http://dx.doi.org/10.1103/PhysRevB.57.1505
9.
9.A. Svane and O. Gunnarsson, “Transition-metal oxides in the self-interaction-corrected density-functional formalism,” Phys. Rev. Lett. 65(9), 11481151 (1990).
http://dx.doi.org/10.1103/PhysRevLett.65.1148
10.
10.R. Gillen and J. Robertson, “Accurate screened exchange band structures for the transition metal monoxides MnO, FeO, CoO and NiO,” J. Phys.: Condens. Matter 25(16), 165502 (2013).
http://dx.doi.org/10.1088/0953-8984/25/16/165502
11.
11.F. Aryasetiawan and O. Gunnarsson, “Electronic structure of NiO in the GW approximation,” Phys. Rev. Lett. 74(16), 32213224 (1995).
http://dx.doi.org/10.1103/PhysRevLett.74.3221
12.
12.S. Massidda, A. Continenza, M. Posternak, and A. Baldereschi, “Quasiparticle energy bands of transition-metal oxides within a model GW scheme,” Phys. Rev. B 55(20), 1349413502 (1997).
http://dx.doi.org/10.1103/PhysRevB.55.13494
13.
13.S. V. Faleev, M. van Schilfgaarde, and T. Kotani, “All-electron self-consistent GW Approximation: Application to Si, MnO, and NiO,” Phys. Rev. Lett. 93(12), 126406 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.126406
14.
14.J.-L. Li, G.-M. Rignanese, and S. G. Louie, “Quasiparticle energy bands of NiO in the GW approximation,” Phys. Rev. B 71(19), 193102 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.193102
15.
15.H. Jiang, R. I. Gomez-Abal, P. Rinke, and M. Scheffler, “First-principles modeling of localized d states with the GW@LDA+U approach,” Phys. Rev. B 82(4), 045108 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.045108
16.
16.C. Rödl, F. Fuchs, J. Furthmüller, and F. Bechstedt, “Quasiparticle band structures of the antiferromagnetic transition-metal oxides MnO, FeO, CoO, and NiO,” Phys. Rev. B 79(23), 235114 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.235114
17.
17.S. Das, J. E. Coulter, and E. Manousakis, “Convergence of quasiparticle self-consistent GW calculations of transition-metal monoxides,” Phys. Rev. B 91(11), 115105 (2015).
http://dx.doi.org/10.1103/PhysRevB.91.115105
18.
18.V. I. Anisimov, P. Kuiper, and J. Nordgren, “First-principles calculation of NiO valence spectra in the impurity-Anderson-model approximation,” Phys. Rev. B 50(12), 82578265 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.8257
19.
19.S. Y. Savrasov and G. Kotliar, “Linear response calculations of lattice dynamics in strongly correlated systems,” Phys. Rev. Lett. 90(5), 056401 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.056401
20.
20.J. Kuneš, V. I. Anisimov, S. L. Skornyakov, A. V. Lukoyanov, and D. Vollhardt, “NiO: Correlated band structure of a charge-transfer insulator,” Phys. Rev. Lett. 99(15), 156404 (2007).
http://dx.doi.org/10.1103/physrevlett.99.156404
21.
21.X. Ren, I. Leonov, G. Keller, M. Kollar, I. Nekrasov, and D. Vollhardt, “LDA+DMFT computation of the electronic spectrum of NiO,” Phys. Rev. B 74(19), 195114 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.195114
22.
22.B. E. F. Fender, A. J. Jacobson, and F. A. Wedgwood, “Covalency parameters in MnO, α-MnS, and NiO,” J. Chem. Phys. 48(3), 990994 (1968).
http://dx.doi.org/10.1063/1.1668855
23.
23.A. Fujimori, F. Minami, and S. Sugano, “Multielectron satellites and spin polarization in photoemission from Ni compounds,” Phys. Rev. B 29(9), 52255227 (1984).
http://dx.doi.org/10.1103/PhysRevB.29.5225
24.
24.Y. H. Kwon, S. H. Chun, J.-H. Han, and H. K. Cho, “Correlation between electrical properties and point defects in NiO thin films,” Met. Mater. Int. 18(6), 10031007 (2012).
http://dx.doi.org/10.1007/s12540-012-6012-5
25.
25.W.-L. Jang, Y.-M. Lu, W.-S. Hwang, T.-L. Hsiung, and H. P. Wang, “Point defects in sputtered NiO films,” Appl. Phys. Lett. 94(6), 062103 (2009).
http://dx.doi.org/10.1063/1.3081025
26.
26.J. Szuber, “Use of thermionic emission for studying of point defects in NiO single crystals,” J. Mater. Sci. 19(6), 19911996 (1984).
http://dx.doi.org/10.1007/BF00550269
27.
27.S. Seo, M. J. Lee, D. H. Seo, E. J. Jeoung, D.-S. Suh, Y. S. Joung, I. K. Yoo, I. R. Hwang, S. H. Kim, I. S. Byun, J.-S. Kim, J. S. Choi, and B. H. Park, “Reproducible resistance switching in polycrystalline NiO films,” Appl. Phys. Lett. 85(23), 56555657 (2004).
http://dx.doi.org/10.1063/1.1831560
28.
28.S. Park, H.-S. Ahn, C.-K. Lee, H. Kim, H. Jin, H.-S. Lee, S. Seo, J. Yu, and S. Han, “Interaction and ordering of vacancy defects in NiO,” Phys. Rev. B 77(13), 134103 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.134103
29.
29.W. M. C. Foulkes, L. Mitas, R. J. Needs, and G. Rajagopal, “Quantum Monte Carlo simulations of solids,” Rev. Mod. Phys. 73(1), 3383 (2001).
http://dx.doi.org/10.1103/RevModPhys.73.33
30.
30.R. J. Needs, M. D. Towler, N. D. Drummond, and P. L. Ríos, “Continuum variational and diffusion quantum Monte Carlo calculations,” J. Phys.: Condens. Matter 22(2), 023201 (2010).
http://dx.doi.org/10.1088/0953-8984/22/2/023201
31.
31.K. Foyevtsova, J. T. Krogel, J. Kim, P. R. C. Kent, E. Dagotto, and F. A. Reboredo, “Ab initio quantum Monte Carlo calculations of spin superexchange in cuprates: The benchmarking case of Ca2CuO3,” Phys. Rev. X 4(3), 031003 (2014).
http://dx.doi.org/10.1103/physrevx.4.031003
32.
32.L. Shulenburger and T. R. Mattsson, “Quantum Monte Carlo applied to solids,” Phys. Rev. B 88(24), 245117 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.245117
33.
33.C. Lin, F. H. Zong, and D. M. Ceperley, “Twist-averaged boundary conditions in continuum quantum Monte Carlo algorithms,” Phys. Rev. E 64(1), 016702 (2001).
http://dx.doi.org/10.1103/PhysRevE.64.016702
34.
34.J. A. Santana, J. T. Krogel, J. Kim, P. R. C. Kent, and F. A. Reboredo, “Structural stability and defect energetics of ZnO from diffusion quantum Monte Carlo,” J. Chem. Phys. 142(16), 164705 (2015).
http://dx.doi.org/10.1063/1.4919242
35.
35.A. J. Williamson, R. Q. Hood, R. J. Needs, and G. Rajagopal, “Diffusion quantum Monte Carlo calculations of the excited states of silicon,” Phys. Rev. B 57(19), 1214012144 (1998).
http://dx.doi.org/10.1103/PhysRevB.57.12140
36.
36.R. J. Needs, P. R. C. Kent, A. R. Porter, M. D. Towler, and G. Rajagopal, “Quantum Monte Carlo calculations for ground and excited states,” Int. J. Quantum Chem. 86(2), 218225 (2002).
http://dx.doi.org/10.1002/qua.1602
37.
37.S. Tanaka, “Cohesive energy of NiO: A quantum Monte Carlo approach,” J. Phys. Soc. Jpn. 62(6), 21122119 (1993).
http://dx.doi.org/10.1143/JPSJ.62.2112
38.
38.R. J. Needs and M. D. Towler, “The diffusion quantum Monte Carlo method: Designing trial wave functions for NiO,” Int. J. Mod. Phys. B 17(28), 54255434 (2003).
http://dx.doi.org/10.1142/S0217979203020533
39.
39.P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. D. Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, “QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials,” J. Phys.: Condens. Matter 21(39), 395502 (2009).
http://dx.doi.org/10.1088/0953-8984/21/39/395502
40.
40.D. M. Ceperley and B. J. Alder, “Ground state of the electron gas by a stochastic method,” Phys. Rev. Lett. 45(7), 566569 (1980).
http://dx.doi.org/10.1103/PhysRevLett.45.566
41.
41.N. D. Drummond, R. J. Needs, A. Sorouri, and W. M. C. Foulkes, “Finite-size errors in continuum quantum Monte Carlo calculations,” Phys. Rev. B 78(12), 125106 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.125106
42.
42.L. M. Fraser, W. M. C. Foulkes, G. Rajagopal, R. J. Needs, S. D. Kenny, and A. J. Williamson, “Finite-size effects and Coulomb interactions in quantum Monte Carlo calculations for homogeneous systems with periodic boundary conditions,” Phys. Rev. B 53(4), 18141832 (1996).
http://dx.doi.org/10.1103/PhysRevB.53.1814
43.
43.A. J. Williamson, G. Rajagopal, R. J. Needs, L. M. Fraser, W. M. C. Foulkes, Y. Wang, and M.-Y. Chou, “Elimination of Coulomb finite-size effects in quantum many-body simulations,” Phys. Rev. B 55(8), R4851R4854 (1997).
http://dx.doi.org/10.1103/PhysRevB.55.R4851
44.
44.D. R. Hamann, M. Schlüter, and C. Chiang, “Norm-conserving pseudopotentials,” Phys. Rev. Lett. 43(20), 14941497 (1979).
http://dx.doi.org/10.1103/PhysRevLett.43.1494
45.
45.See http://opium.sourceforge.net/sci.html for Opium–pseudopotential generation project.
46.
46.A. M. Rappe, K. M. Rabe, E. Kaxiras, and J. D. Joannopoulos, “Optimized pseudopotentials,” Phys. Rev. B 41(2), 12271230 (1990).
http://dx.doi.org/10.1103/PhysRevB.41.1227
47.
47.J. T. Krogel, J. A. Santana, and F. A. Reboredo, “Pseudopotentials for quantum Monte Carlo studies of transition metal oxides,” Phys. Rev. B (to be published).
48.
48.See http://qmcpack.org/ for QMCPACK code.
49.
49.J. T. Krogel, “Nexus: A modular workflow management system for quantum simulation codes,” Comput. Phys. Commun. (published online 2015).
http://dx.doi.org/10.1016/j.cpc.2015.08.012
50.
50.M. Casula, “Beyond the locality approximation in the standard diffusion Monte Carlo method,” Phys. Rev. B 74(16), 161102 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.161102
51.
51.K. Terakura, T. Oguchi, A. R. Williams, and J. Kübler, “Band theory of insulating transition-metal monoxides: Band-structure calculations,” Phys. Rev. B 30(8), 47344747 (1984).
http://dx.doi.org/10.1103/PhysRevB.30.4734
52.
52.S. B. Zhang and J. E. Northrup, “Chemical potential dependence of defect formation energies in GaAs: Application to Ga self-diffusion,” Phys. Rev. Lett. 67(17), 23392342 (1991).
http://dx.doi.org/10.1103/PhysRevLett.67.2339
53.
53.C. Freysoldt, B. Grabowski, T. Hickel, J. Neugebauer, G. Kresse, A. Janotti, and C. G. Van de Walle, “First-principles calculations for point defects in solids,” Rev. Mod. Phys. 86(1), 253305 (2014).
http://dx.doi.org/10.1103/RevModPhys.86.253
54.
54.Collaboration: Authors and editors of the volumes III/17G-41D, “NiO: Lattice parameter, thermal expansion,” in Non-Tetrahedrally Bonded Binary Compounds II, edited byO. Madelung, U. Rössler, and M. Schulz (Springer-Verlag, Berlin, Heidelberg, 2000), Vol. 41D, pp. 14.
55.
55.M. Leslie and N. J. Gillan, “The energy and elastic dipole tensor of defects in ionic crystals calculated by the supercell method,” J. Phys. C: Solid State Phys. 18(5), 973 (1985).
http://dx.doi.org/10.1088/0022-3719/18/5/005
56.
56.G. Makov and M. C. Payne, “Periodic boundary conditions in ab initio calculations,” Phys. Rev. B 51(7), 40144022 (1995).
http://dx.doi.org/10.1103/PhysRevB.51.4014
57.
57.F. Oba, A. Togo, I. Tanaka, J. Paier, and G. Kresse, “Defect energetics in ZnO: A hybrid Hartree-Fock density functional study,” Phys. Rev. B 77(24), 245202 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.245202
58.
58.Collaboration: Authors and editors of the volumes III/17G-41D, “NiO: Optical properties, dielectric constants,” in Non-Tetrahedrally Bonded Binary Compounds II, edited byO. Madelung, U. Rössler, and M. Schulz (Springer-Verlag, Berlin, Heidelberg, 2000), Vol. 41D, pp. 114.
59.
59.J. Heyd, G. E. Scuseria, and M. Ernzerhof, “Hybrid functionals based on a screened Coulomb potential,” J. Chem. Phys. 118(18), 82078215 (2003).
http://dx.doi.org/10.1063/1.1564060
60.
60.G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54(16), 1116911186 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.11169
61.
61.G. Kresse and J. Hafner, “Ab initio molecular-dynamics simulation of the liquid-metal amorphous-semiconductor transition in germanium,” Phys. Rev. B 49(20), 1425114269 (1994).
http://dx.doi.org/10.1103/PhysRevB.49.14251
62.
62.P. E. Blöchl, “Projector augmented-wave method,” Phys. Rev. B 50(24), 1795317979 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.17953
63.
63.F. D. Murnaghan, “The compressibility of media under extreme pressures,” Proc. Natl. Acad. Sci. 30(9), 244247 (1944).
http://dx.doi.org/10.1073/pnas.30.9.244
64.
64.Néel temperature,” Wikipedia, the free encyclopedia 18-Apr-2015.
65.
65.D. R. Lide, CRC Handbook of Chemistry and Physics, 75th ed. (CRC Press, Boca Raton, 1995).
66.
66.Z.-X. Shen, R. S. List, D. S. Dessau, B. O. Wells, O. Jepsen, A. J. Arko, R. Barttlet, C. K. Shih, F. Parmigiani, J. C. Huang, and P. A. P. Lindberg, “Electronic structure of NiO: Correlation and band effects,” Phys. Rev. B 44(8), 36043626 (1991).
http://dx.doi.org/10.1103/PhysRevB.44.3604
67.
67.J. P. Perdew and A. Zunger, “Self-interaction correction to density-functional approximations for many-electron systems,” Phys. Rev. B 23(10), 50485079 (1981).
http://dx.doi.org/10.1103/PhysRevB.23.5048
68.
68.J. A. Santana, J. T. Krogel, P. R. C. Kent, and F. A. Reboredo, “Diffusion quantum Monte Carlo calculations of SrFeO3 and LaFeO3” (unpublished).
69.
69.S. Chiesa, D. M. Ceperley, R. M. Martin, and M. Holzmann, “Finite-size error in many-body simulations with long-range interactions,” Phys. Rev. Lett. 97(7), 076404 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.076404
http://aip.metastore.ingenta.com/content/aip/journal/jcp/143/16/10.1063/1.4934262
Loading
/content/aip/journal/jcp/143/16/10.1063/1.4934262
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/143/16/10.1063/1.4934262
2015-10-28
2016-12-10

Abstract

We present a many-body diffusion quantum Monte Carlo (DMC) study of the bulk and defect properties of NiO. We find excellent agreement with experimental values, within 0.3%, 0.6%, and 3.5% for the lattice constant, cohesive energy, and bulk modulus, respectively. The quasiparticle bandgap was also computed, and the DMC result of 4.72 (0.17) eV compares well with the experimental value of 4.3 eV. Furthermore, DMC calculations of excited states at the L, Z, and the gamma point of the Brillouin zone reveal a flat upper valence band for NiO, in good agreement with Angle Resolved Photoemission Spectroscopy results. To study defect properties, we evaluated the formation energies of the neutral and charged vacancies of oxygen and nickel in NiO. A formation energy of 7.2 (0.15) eV was found for the oxygen vacancy under oxygen rich conditions. For the Ni vacancy, we obtained a formation energy of 3.2 (0.15) eV under Ni rich conditions. These results confirm that NiO occurs as a p-type material with the dominant intrinsic vacancy defect being Ni vacancy.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/143/16/1.4934262.html;jsessionid=a2BGEormUUBySVkyzptX5Too.x-aip-live-02?itemId=/content/aip/journal/jcp/143/16/10.1063/1.4934262&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/143/16/10.1063/1.4934262&pageURL=http://scitation.aip.org/content/aip/journal/jcp/143/16/10.1063/1.4934262'
Right1,Right2,Right3,