Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/143/17/10.1063/1.4934504
1.
1.V. Conti Nibali and M. Havenith, J. Am. Chem. Soc. 136, 12800 (2014).
http://dx.doi.org/10.1021/ja504441h
2.
2.M. J. Todd and J. Gomez, Anal. Biochem. 296, 179 (2001).
http://dx.doi.org/10.1006/abio.2001.5218
3.
3.S. Hammes-Schiffer and J. Klinman, Acc. Chem. Res. 48, 899 (2015).
http://dx.doi.org/10.1021/acs.accounts.5b00113
4.
4.K. A. Henzler-Wildman, M. Lei, V. Thai, S. J. Kerns, M. Karplus, and D. Kern, Nature 450, 913 (2007).
http://dx.doi.org/10.1038/nature06407
5.
5.T. I. Igumenova, K. K. Frederick, and A. J. Wand, Chem. Rev. 106, 1672 (2006).
http://dx.doi.org/10.1021/cr040422h
6.
6.M. Grossman, B. Born, M. Heyden, D. Tworowski, G. B. Fields, I. Sagi, and M. Havenith, Nat. Struct. Mol. Biol. 18, 1102 (2011).
http://dx.doi.org/10.1038/nsmb.2120
7.
7.C. Riedel, R. Gabizon, C. A. M. Wilson, K. Hamadani, K. Tsekouras, S. Marqusee, S. Pressé, and C. Bustamante, Nature 517, 227 (2015).
http://dx.doi.org/10.1038/nature14043
8.
8.G. M. Whitesides, Angew. Chem., Int. Ed. 54, 3196 (2015).
http://dx.doi.org/10.1002/anie.201410884
9.
9.N. Nandi, K. Bhattacharyya, and B. Bagchi, Chem. Rev. 100, 2013 (2000).
http://dx.doi.org/10.1021/cr980127v
10.
10.C. A. Smith, D. Ban, S. Pratihar, K. Giller, C. Schwiegk, B. L. de Groot, S. Becker, C. Griesinger, and D. Lee, Angew. Chem., Int. Ed. Engl. 54, 207 (2015).
http://dx.doi.org/10.1002/anie.201408890
11.
11.K. Wood, A. Frölich, A. Paciaroni, M. Moulin, M. Härtlein, G. Zaccai, D. J. Tobias, and M. Weik, J. Am. Chem. Soc. 130, 45864587 (2008);
http://dx.doi.org/10.1021/ja710526r
11.J. R. Lewandowski, M. E. Halse, M. Blackledge, and L. Emsley, Science 348, 578 (2015).
http://dx.doi.org/10.1126/science.aaa6111
12.
12.O. F. Lange, N.-A. Lakomek, C. Farès, G. F. Schröder, K. F. A. Walter, S. Becker, J. Meiler, H. Grubmüller, C. Griesinger, and B. L. de Groot, Science 320, 1471 (2008).
http://dx.doi.org/10.1126/science.1157092
13.
13.G. Zaccai, J. Non-Cryst. Solids 357, 615 (2011).
http://dx.doi.org/10.1016/j.jnoncrysol.2010.06.060
14.
14.S. K. Pal, J. Peon, B. Bagchi, and A. H. Zewail, J. Phys. Chem. B 106, 12376 (2002).
http://dx.doi.org/10.1021/jp0213506
15.
15.S. K. Pal, J. Peon, and A. H. Zewail, Proc. Natl. Acad. Sci. U. S. A. 99, 1763 (2002).
http://dx.doi.org/10.1073/pnas.042697899
16.
16.O. Miyashita, P. G. Wolynes, and J. N. Onuchic, J. Phys. Chem. B 109, 1959 (2005).
http://dx.doi.org/10.1021/jp046736q
17.
17.Terahertz Spectroscopy: Principles and Applications, 1st ed., edited by S. L. Dexheimer (CRC Press, Boca Raton, 2007).
18.
18.K. P. Cheung and D. H. Auston, Infrared Phys. 26, 23 (1986).
http://dx.doi.org/10.1016/0020-0891(86)90043-6
19.
19.C. A. Schmuttenmaer, Chem. Rev. 104, 1759 (2004).
http://dx.doi.org/10.1021/cr020685g
20.
20.D. M. Leitner, M. Havenith, and M. Gruebele, Int. Rev. Phys. Chem. 25, 553 (2006).
http://dx.doi.org/10.1080/01442350600862117
21.
21.P. U. Jepsen, D. G. Cooke, and M. Koch, Laser Photonics Rev. 5, 124 (2011).
http://dx.doi.org/10.1002/lpor.201000011
22.
22.A. G. Markelz, A. Roitberg, and E. J. Heilweil, Chem. Phys. Lett. 320, 42 (2000).
http://dx.doi.org/10.1016/S0009-2614(00)00227-X
23.
23.M. Walther, P. Plochocka, B. Fischer, H. Helm, and P. U. Jepsen, Biopolymers 67, 310 (2002).
http://dx.doi.org/10.1002/bip.10106
24.
24.N. Laman, S. S. Harsha, D. Grischkowsky, and J. S. Melinger, Biophys. J. 94, 1010 (2008).
http://dx.doi.org/10.1529/biophysj.107.113647
25.
25.M. Walther, B. M. Fischer, and P. U. Jepsen, Chem. Phys. 288, 261 (2003).
http://dx.doi.org/10.1016/S0301-0104(03)00031-4
26.
26.A. G. Markelz, IEEE J. Sel. Top. Quantum Electron. 14, 180 (2008).
http://dx.doi.org/10.1109/JSTQE.2007.913424
27.
27.R. J. Falconer and A. G. Markelz, J. Infrared, Millimeter, Terahertz Waves 33, 973 (2012).
http://dx.doi.org/10.1007/s10762-012-9915-9
28.
28.G. Acbas, K. A. Niessen, E. H. Snell, and A. G. Markelz, Nat. Commun. 5, 3076 (2014).
http://dx.doi.org/10.1038/ncomms4076
29.
29.K. A. Niessen, M. Xu, and A. G. Markelz, Biophys. Rev. 7, 201 (2015).
http://dx.doi.org/10.1007/s12551-015-0168-4
30.
30.E. Bründermann, D. R. Chamberlin, and E. E. Haller, Appl. Phys. Lett. 76, 2991 (2000).
http://dx.doi.org/10.1063/1.126555
31.
31.K. Meister, S. Ebbinghaus, Y. Xu, J. G. Duman, A. DeVries, M. Gruebele, D. M. Leitner, and M. Havenith, Proc. Natl. Acad. Sci. U. S. A. 110, 1617 (2012).
http://dx.doi.org/10.1073/pnas.1214911110
32.
32.S. Ebbinghaus, S. J. Kim, M. Heyden, X. Yu, U. Heugen, M. Gruebele, D. M. Leitner, and M. Havenith, Proc. Natl. Acad. Sci. U. S. A. 104, 20749 (2007).
http://dx.doi.org/10.1073/pnas.0709207104
33.
33.D. M. Leitner, M. Gruebele, and M. Havenith, HFSP J. 2, 314 (2008).
http://dx.doi.org/10.2976/1.2976661
34.
34.M. Heyden, E. Bründermann, U. Heugen, G. Niehues, D. M. Leitner, and M. Havenith, J. Am. Chem. Soc. 130, 5773 (2008).
http://dx.doi.org/10.1021/ja0781083
35.
35.M. Sajadi, F. Berndt, C. Richter, M. Gerecke, R. Mahrwald, and N. P. Ernsting, J. Phys. Chem. Lett. 5, 1845 (2014).
http://dx.doi.org/10.1021/jz500437c
36.
36.M. Heyden, S. Ebbinghaus, and M. Havenith, Encyclopedia of Analytical Chemistry (John Wiley & Sons, Ltd., 2010).
37.
37.M. Heyden and M. Havenith, Methods San Diego Calif. 52, 74 (2010).
http://dx.doi.org/10.1016/j.ymeth.2010.05.007
38.
38.N. T. Hunt, A. A. Jaye, and S. R. Meech, Phys. Chem. Chem. Phys. 9, 2167 (2007).
http://dx.doi.org/10.1039/b616078f
39.
39.N. T. Hunt, L. Kattner, R. P. Shanks, and K. Wynne, J. Am. Chem. Soc. 129, 3168 (2007).
http://dx.doi.org/10.1021/ja066289n
40.
40.K. Mazur, I. A. Heisler, and S. R. Meech, J. Phys. Chem. B 115, 2563 (2011).
http://dx.doi.org/10.1021/jp111764p
41.
41.D. A. Turton, H. M. Senn, T. Harwood, A. J. Lapthorn, E. M. Ellis, and K. Wynne, Nat. Commun. 5, 3999 (2014).
http://dx.doi.org/10.1038/ncomms4999
42.
42.M. Heyden, J. Sun, S. Funkner, G. Mathias, H. Forbert, M. Havenith, and D. Marx, Proc. Natl. Acad. Sci. U. S. A. 107, 12068 (2010).
http://dx.doi.org/10.1073/pnas.0914885107
43.
43.D. A. Schmidt, O. Birer, S. Funkner, B. P. Born, R. Gnanasekaran, G. W. Schwaab, D. M. Leitner, and M. Havenith, J. Am. Chem. Soc. 131, 18512 (2009).
http://dx.doi.org/10.1021/ja9083545
44.
44.J. Sun, G. Niehues, H. Forbert, D. Decka, G. Schwaab, D. Marx, and M. Havenith, J. Am. Chem. Soc. 136, 5031 (2014).
http://dx.doi.org/10.1021/ja4129857
45.
45.V. Babin, C. Leforestier, and F. Paesani, J. Chem. Theory Comput. 9, 5395 (2013).
http://dx.doi.org/10.1021/ct400863t
46.
46.M. L. Laury, L.-P. Wang, V. S. Pande, T. Head-Gordon, and J. W. Ponder, J. Phys. Chem. B 119, 9423 (2015).
http://dx.doi.org/10.1021/jp510896n
47.
47.S. J. Kim, B. Born, M. Havenith, and M. Gruebele, Angew. Chem., Int. Ed. 47, 6486 (2008).
http://dx.doi.org/10.1002/anie.200802281
48.
48.J. Dielmann-Gessner, M. Grossman, V. Conti Nibali, B. Born, I. Solomonov, G. B. Fields, M. Havenith, and I. Sagi, Proc. Natl. Acad. Sci. U. S. A. 111, 1785717862 (2014).
http://dx.doi.org/10.1073/pnas.1410144111
49.
49.A. L. DeVries, in Methods in Enzymology, edited by L. Packer (Academic Press, 1986), pp. 293303.
50.
50.K. A. Sharp, Proc. Natl. Acad. Sci. U. S. A. 108, 7281 (2011).
http://dx.doi.org/10.1073/pnas.1104618108
51.
51.Z. Jia, C. I. DeLuca, H. Chao, and P. L. Davies, Nature 384, 285 (1996).
http://dx.doi.org/10.1038/384285a0
52.
52.J. G. Duman, Annu. Rev. Physiol. 63, 327 (2001).
http://dx.doi.org/10.1146/annurev.physiol.63.1.327
53.
53.S. Ebbinghaus, K. Meister, B. Born, A. L. DeVries, M. Gruebele, and M. Havenith, J. Am. Chem. Soc. 132, 12210 (2010).
http://dx.doi.org/10.1021/ja1051632
54.
54.K. Meister, J. G. Duman, Y. Xu, A. L. DeVries, D. M. Leitner, and M. Havenith, J. Phys. Chem. B 118, 7920 (2014).
http://dx.doi.org/10.1021/jp5006742
55.
55.K. Meister, S. Strazdaite, A. L. DeVries, S. Lotze, L. L. C. Olijve, I. K. Voets, and H. J. Bakker, Proc. Natl. Acad. Sci. U. S. A. 111, 17732 (2014).
http://dx.doi.org/10.1073/pnas.1414188111
56.
56.Y. Celik, R. Drori, N. Pertaya-Braun, A. Altan, T. Barton, M. Bar-Dolev, A. Groisman, P. L. Davies, and I. Braslavsky, Proc. Natl. Acad. Sci. U. S. A. 110, 1309 (2013).
http://dx.doi.org/10.1073/pnas.1213603110
57.
57.T. Sun, F.-H. Lin, R. L. Campbell, J. S. Allingham, and P. L. Davies, Science 343, 795 (2014).
http://dx.doi.org/10.1126/science.1247407
58.
58.M. R. Lockett, H. Lange, B. Breiten, A. Heroux, W. Sherman, D. Rappoport, P. O. Yau, P. W. Snyder, and G. M. Whitesides, Angew. Chem., Int. Ed. 52, 77147717 (2013).
http://dx.doi.org/10.1002/anie.201301813
http://aip.metastore.ingenta.com/content/aip/journal/jcp/143/17/10.1063/1.4934504
Loading
/content/aip/journal/jcp/143/17/10.1063/1.4934504
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/143/17/10.1063/1.4934504
2015-11-02
2016-09-26

Abstract

Terahertz (THz) spectroscopy has turned out to be a powerful tool which is able to shed new light on the role of water in biomolecular processes. The low frequency spectrum of the solvated biomolecule in combination with MD simulations provides deep insights into the collective hydrogen bond dynamics on the sub-ps time scale. The absorption spectrum between 1 THz and 10 THz of solvated biomolecules is sensitive to changes in the fast fluctuations of the water network. Systematic studies on mutants of antifreeze proteins indicate a direct correlation between biological activity and a retardation of the (sub)-ps hydration dynamics at the protein binding site, i.e., a “hydration funnel.” Kinetic THz absorption studies probe the temporal changes of THz absorption during a biological process, and give access to the kinetics of the coupled protein-hydration dynamics. When combined with simulations, the observed results can be explained in terms of a two-tier model involving a local binding and a long range influence on the hydration bond dynamics of the water around the binding site that highlights the significance of the changes in the hydration dynamics at recognition site for biomolecular recognition. Water is shown to assist molecular recognition processes.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/143/17/1.4934504.html;jsessionid=Lardo3bAZg8gdV4I7Q4Jrte2.x-aip-live-02?itemId=/content/aip/journal/jcp/143/17/10.1063/1.4934504&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/143/17/10.1063/1.4934504&pageURL=http://scitation.aip.org/content/aip/journal/jcp/143/17/10.1063/1.4934504'
Right1,Right2,Right3,