Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.V. Conti Nibali and M. Havenith, J. Am. Chem. Soc. 136, 12800 (2014).
2.M. J. Todd and J. Gomez, Anal. Biochem. 296, 179 (2001).
3.S. Hammes-Schiffer and J. Klinman, Acc. Chem. Res. 48, 899 (2015).
4.K. A. Henzler-Wildman, M. Lei, V. Thai, S. J. Kerns, M. Karplus, and D. Kern, Nature 450, 913 (2007).
5.T. I. Igumenova, K. K. Frederick, and A. J. Wand, Chem. Rev. 106, 1672 (2006).
6.M. Grossman, B. Born, M. Heyden, D. Tworowski, G. B. Fields, I. Sagi, and M. Havenith, Nat. Struct. Mol. Biol. 18, 1102 (2011).
7.C. Riedel, R. Gabizon, C. A. M. Wilson, K. Hamadani, K. Tsekouras, S. Marqusee, S. Pressé, and C. Bustamante, Nature 517, 227 (2015).
8.G. M. Whitesides, Angew. Chem., Int. Ed. 54, 3196 (2015).
9.N. Nandi, K. Bhattacharyya, and B. Bagchi, Chem. Rev. 100, 2013 (2000).
10.C. A. Smith, D. Ban, S. Pratihar, K. Giller, C. Schwiegk, B. L. de Groot, S. Becker, C. Griesinger, and D. Lee, Angew. Chem., Int. Ed. Engl. 54, 207 (2015).
11.K. Wood, A. Frölich, A. Paciaroni, M. Moulin, M. Härtlein, G. Zaccai, D. J. Tobias, and M. Weik, J. Am. Chem. Soc. 130, 45864587 (2008);
11.J. R. Lewandowski, M. E. Halse, M. Blackledge, and L. Emsley, Science 348, 578 (2015).
12.O. F. Lange, N.-A. Lakomek, C. Farès, G. F. Schröder, K. F. A. Walter, S. Becker, J. Meiler, H. Grubmüller, C. Griesinger, and B. L. de Groot, Science 320, 1471 (2008).
13.G. Zaccai, J. Non-Cryst. Solids 357, 615 (2011).
14.S. K. Pal, J. Peon, B. Bagchi, and A. H. Zewail, J. Phys. Chem. B 106, 12376 (2002).
15.S. K. Pal, J. Peon, and A. H. Zewail, Proc. Natl. Acad. Sci. U. S. A. 99, 1763 (2002).
16.O. Miyashita, P. G. Wolynes, and J. N. Onuchic, J. Phys. Chem. B 109, 1959 (2005).
17.Terahertz Spectroscopy: Principles and Applications, 1st ed., edited by S. L. Dexheimer (CRC Press, Boca Raton, 2007).
18.K. P. Cheung and D. H. Auston, Infrared Phys. 26, 23 (1986).
19.C. A. Schmuttenmaer, Chem. Rev. 104, 1759 (2004).
20.D. M. Leitner, M. Havenith, and M. Gruebele, Int. Rev. Phys. Chem. 25, 553 (2006).
21.P. U. Jepsen, D. G. Cooke, and M. Koch, Laser Photonics Rev. 5, 124 (2011).
22.A. G. Markelz, A. Roitberg, and E. J. Heilweil, Chem. Phys. Lett. 320, 42 (2000).
23.M. Walther, P. Plochocka, B. Fischer, H. Helm, and P. U. Jepsen, Biopolymers 67, 310 (2002).
24.N. Laman, S. S. Harsha, D. Grischkowsky, and J. S. Melinger, Biophys. J. 94, 1010 (2008).
25.M. Walther, B. M. Fischer, and P. U. Jepsen, Chem. Phys. 288, 261 (2003).
26.A. G. Markelz, IEEE J. Sel. Top. Quantum Electron. 14, 180 (2008).
27.R. J. Falconer and A. G. Markelz, J. Infrared, Millimeter, Terahertz Waves 33, 973 (2012).
28.G. Acbas, K. A. Niessen, E. H. Snell, and A. G. Markelz, Nat. Commun. 5, 3076 (2014).
29.K. A. Niessen, M. Xu, and A. G. Markelz, Biophys. Rev. 7, 201 (2015).
30.E. Bründermann, D. R. Chamberlin, and E. E. Haller, Appl. Phys. Lett. 76, 2991 (2000).
31.K. Meister, S. Ebbinghaus, Y. Xu, J. G. Duman, A. DeVries, M. Gruebele, D. M. Leitner, and M. Havenith, Proc. Natl. Acad. Sci. U. S. A. 110, 1617 (2012).
32.S. Ebbinghaus, S. J. Kim, M. Heyden, X. Yu, U. Heugen, M. Gruebele, D. M. Leitner, and M. Havenith, Proc. Natl. Acad. Sci. U. S. A. 104, 20749 (2007).
33.D. M. Leitner, M. Gruebele, and M. Havenith, HFSP J. 2, 314 (2008).
34.M. Heyden, E. Bründermann, U. Heugen, G. Niehues, D. M. Leitner, and M. Havenith, J. Am. Chem. Soc. 130, 5773 (2008).
35.M. Sajadi, F. Berndt, C. Richter, M. Gerecke, R. Mahrwald, and N. P. Ernsting, J. Phys. Chem. Lett. 5, 1845 (2014).
36.M. Heyden, S. Ebbinghaus, and M. Havenith, Encyclopedia of Analytical Chemistry (John Wiley & Sons, Ltd., 2010).
37.M. Heyden and M. Havenith, Methods San Diego Calif. 52, 74 (2010).
38.N. T. Hunt, A. A. Jaye, and S. R. Meech, Phys. Chem. Chem. Phys. 9, 2167 (2007).
39.N. T. Hunt, L. Kattner, R. P. Shanks, and K. Wynne, J. Am. Chem. Soc. 129, 3168 (2007).
40.K. Mazur, I. A. Heisler, and S. R. Meech, J. Phys. Chem. B 115, 2563 (2011).
41.D. A. Turton, H. M. Senn, T. Harwood, A. J. Lapthorn, E. M. Ellis, and K. Wynne, Nat. Commun. 5, 3999 (2014).
42.M. Heyden, J. Sun, S. Funkner, G. Mathias, H. Forbert, M. Havenith, and D. Marx, Proc. Natl. Acad. Sci. U. S. A. 107, 12068 (2010).
43.D. A. Schmidt, O. Birer, S. Funkner, B. P. Born, R. Gnanasekaran, G. W. Schwaab, D. M. Leitner, and M. Havenith, J. Am. Chem. Soc. 131, 18512 (2009).
44.J. Sun, G. Niehues, H. Forbert, D. Decka, G. Schwaab, D. Marx, and M. Havenith, J. Am. Chem. Soc. 136, 5031 (2014).
45.V. Babin, C. Leforestier, and F. Paesani, J. Chem. Theory Comput. 9, 5395 (2013).
46.M. L. Laury, L.-P. Wang, V. S. Pande, T. Head-Gordon, and J. W. Ponder, J. Phys. Chem. B 119, 9423 (2015).
47.S. J. Kim, B. Born, M. Havenith, and M. Gruebele, Angew. Chem., Int. Ed. 47, 6486 (2008).
48.J. Dielmann-Gessner, M. Grossman, V. Conti Nibali, B. Born, I. Solomonov, G. B. Fields, M. Havenith, and I. Sagi, Proc. Natl. Acad. Sci. U. S. A. 111, 1785717862 (2014).
49.A. L. DeVries, in Methods in Enzymology, edited by L. Packer (Academic Press, 1986), pp. 293303.
50.K. A. Sharp, Proc. Natl. Acad. Sci. U. S. A. 108, 7281 (2011).
51.Z. Jia, C. I. DeLuca, H. Chao, and P. L. Davies, Nature 384, 285 (1996).
52.J. G. Duman, Annu. Rev. Physiol. 63, 327 (2001).
53.S. Ebbinghaus, K. Meister, B. Born, A. L. DeVries, M. Gruebele, and M. Havenith, J. Am. Chem. Soc. 132, 12210 (2010).
54.K. Meister, J. G. Duman, Y. Xu, A. L. DeVries, D. M. Leitner, and M. Havenith, J. Phys. Chem. B 118, 7920 (2014).
55.K. Meister, S. Strazdaite, A. L. DeVries, S. Lotze, L. L. C. Olijve, I. K. Voets, and H. J. Bakker, Proc. Natl. Acad. Sci. U. S. A. 111, 17732 (2014).
56.Y. Celik, R. Drori, N. Pertaya-Braun, A. Altan, T. Barton, M. Bar-Dolev, A. Groisman, P. L. Davies, and I. Braslavsky, Proc. Natl. Acad. Sci. U. S. A. 110, 1309 (2013).
57.T. Sun, F.-H. Lin, R. L. Campbell, J. S. Allingham, and P. L. Davies, Science 343, 795 (2014).
58.M. R. Lockett, H. Lange, B. Breiten, A. Heroux, W. Sherman, D. Rappoport, P. O. Yau, P. W. Snyder, and G. M. Whitesides, Angew. Chem., Int. Ed. 52, 77147717 (2013).

Data & Media loading...


Article metrics loading...



Terahertz (THz) spectroscopy has turned out to be a powerful tool which is able to shed new light on the role of water in biomolecular processes. The low frequency spectrum of the solvated biomolecule in combination with MD simulations provides deep insights into the collective hydrogen bond dynamics on the sub-ps time scale. The absorption spectrum between 1 THz and 10 THz of solvated biomolecules is sensitive to changes in the fast fluctuations of the water network. Systematic studies on mutants of antifreeze proteins indicate a direct correlation between biological activity and a retardation of the (sub)-ps hydration dynamics at the protein binding site, i.e., a “hydration funnel.” Kinetic THz absorption studies probe the temporal changes of THz absorption during a biological process, and give access to the kinetics of the coupled protein-hydration dynamics. When combined with simulations, the observed results can be explained in terms of a two-tier model involving a local binding and a long range influence on the hydration bond dynamics of the water around the binding site that highlights the significance of the changes in the hydration dynamics at recognition site for biomolecular recognition. Water is shown to assist molecular recognition processes.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd