Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/143/17/10.1063/1.4935178
1.
1.E. Runge and E. K. U. Gross, Phys. Rev. Lett. 52, 977 (1984).
http://dx.doi.org/10.1103/PhysRevLett.52.997
2.
2.M. E. Casida, in Recent Advances in Density Functional Methods Part I, edited byD. P. Chong (World Scientific, Singapore, 1995), pp. 155192.
3.
3.A. Dreuw and M. Head-Gordon, Chem. Rev. 105, 4009 (2005).
http://dx.doi.org/10.1021/cr0505627
4.
4.A. Dreuw and M. Head-Gordon, J. Am. Chem. Soc. 126, 4007 (2004).
http://dx.doi.org/10.1021/ja039556n
5.
5.R. J. Magyar and S. Tretiak, J. Chem. Theory Comput. 3, 976 (2007).
http://dx.doi.org/10.1021/ct600282k
6.
6.A. Dreuw, J. L. Weisman, and M. Head-Gordon, J. Chem. Phys. 119, 2943 (2003).
http://dx.doi.org/10.1063/1.1590951
7.
7.Z. L. Cai, K. Sendt, and J. R. Reimers, J. Chem. Phys. 117, 5543 (2002).
http://dx.doi.org/10.1063/1.1501131
8.
8.S. Grimme and M. Parac, ChemPhysChem 4, 292 (2003).
http://dx.doi.org/10.1002/cphc.200390047
9.
9.R. J. Cave, F. Zhang, N. T. Maitra, and K. Burke, Chem. Phys. Lett. 389, 39 (2004).
http://dx.doi.org/10.1016/j.cplett.2004.03.051
10.
10.N. T. Maitra, F. Zhang, R. J. Cave, and K. Burke, J. Chem. Phys. 120, 5932 (2004).
http://dx.doi.org/10.1063/1.1651060
11.
11.T. Yanai, D. P. Tew, and N. C. Handy, Chem. Phys. Lett. 393, 51 (2004).
http://dx.doi.org/10.1016/j.cplett.2004.06.011
12.
12.A. D. Becke, J. Chem. Phys. 98, 5648 (1993).
http://dx.doi.org/10.1063/1.464913
13.
13.C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).
http://dx.doi.org/10.1103/PhysRevB.37.785
14.
14.M. J. G. Peach, P. Benfield, T. Helgaker, and D. J. Tozer, J. Chem. Phys. 128, 044118 (2008).
http://dx.doi.org/10.1063/1.2831900
15.
15.T. Le Bahers, C. Adamo, and I. Ciofini, J. Chem. Theory Comput. 7, 2498 (2011).
http://dx.doi.org/10.1021/ct200308m
16.
16.C. A. Guido, P. Cortona, B. Mennucci, and C. Adamo, J. Chem. Theory Comput. 9, 3118 (2013).
http://dx.doi.org/10.1021/ct400337e
17.
17.C. A. Guido, P. Cortona, and C. Adamo, J. Chem. Phys. 140, 104101 (2014).
http://dx.doi.org/10.1063/1.4867007
18.
18.H. Ma, T. Qin, and A. Troisi, J. Chem. Theory Comput. 10, 1272 (2014).
http://dx.doi.org/10.1021/ct4010799
19.
19.T. Etienne, X. Assfeld, and A. Monari, J. Chem. Theory Comput. 10, 3896 (2014).
http://dx.doi.org/10.1021/ct5003994
20.
20.R. Richard and J. Herbert, J. Chem. Theory Comput. 7, 1296 (2011).
http://dx.doi.org/10.1021/ct100607w
21.
21.B. M. Wong and T. H. Hsieh, J. Chem. Theory Comput. 6, 3704 (2010).
http://dx.doi.org/10.1021/ct100529s
22.
22.N. Kuritz, T. Stein, R. Baer, and L. Kronik, J. Chem. Theory Comput. 7, 2408 (2011).
http://dx.doi.org/10.1021/ct2002804
23.
23.B. Moore, H. Sun, N. Govind, K. Kowalski, and J. Autschbach, J. Chem. Theory Comput. 11, 3305 (2015).
http://dx.doi.org/10.1021/acs.jctc.5b00335
24.
24.F. Plasser, M. Wormit, and A. Dreuw, J. Chem. Phys. 141, 024106 (2014).
http://dx.doi.org/10.1063/1.4885819
25.
25.F. Plasser, S. Bäppler, M. Wormit, and A. Dreuw, J. Chem. Phys. 141, 024107 (2014).
http://dx.doi.org/10.1063/1.4885820
26.
26.S. A. Bäppler, F. Plasser, M. Wormit, and A. Dreuw, Phys. Rev. A 90, 052521 (2014).
http://dx.doi.org/10.1103/PhysRevA.90.052521
27.
27.F. Plasser, B. Thomitzni, S. A. Bäppler, J. Wenzel, D. R. Rehn, M. Wormit, and A. Dreuw, J. Comput. Chem. 36, 1609 (2015).
http://dx.doi.org/10.1002/jcc.23975
28.
28.S. Tretiak and S. Mukamel, Chem. Rev. 102, 3171 (2002).
http://dx.doi.org/10.1021/cr0101252
29.
29.A. V. Luzanov and O. A. Zhikol, Int. J. Quantum Chem. 110, 902 (2010).
http://dx.doi.org/10.1002/qua.22041
30.
30.F. Plasser and H. Lischka, J. Chem. Theory Comput. 8, 2777 (2012).
http://dx.doi.org/10.1021/ct300307c
31.
31.M. Rohlfing and S. G. Louie, Phys. Rev. B 62, 4927 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.4927
32.
32.B. F. E. Curchod, U. Rothlisberger, and I. Tavernelli, ChemPhysChem 14, 1314 (2013).
http://dx.doi.org/10.1002/cphc.201200941
33.
33.F. Plasser, R. Crespo-Otero, M. Pederzoli, J. Pittner, H. Lischka, and M. Barbatti, J. Chem. Theory Comput. 10, 1395 (2014).
http://dx.doi.org/10.1021/ct4011079
34.
34.S. Hirata and M. Head-Gordon, Chem. Phys. Lett. 314, 291 (1999).
http://dx.doi.org/10.1016/S0009-2614(99)01149-5
35.
35.R. L. Martin, J. Chem. Phys. 118, 4775 (2003).
http://dx.doi.org/10.1063/1.1558471
36.
36.S. Sharifzadeh, P. Darancet, L. Kronik, and J. B. Neaton, J. Phys. Chem. Lett. 4, 2197 (2013).
http://dx.doi.org/10.1021/jz401069f
37.
37.J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
38.
38.Y.-L. Wang and G.-S. Wu, Int. J. Quantum Chem. 108, 430 (2008).
http://dx.doi.org/10.1002/qua.21510
39.
39.S. Tretiak, K. Igumenshchev, and V. Chernyak, Phys. Rev. B 71, 033201 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.033201
40.
40.M. J. G. Peach, M. J. Williamson, and D. J. Tozer, J. Chem. Theory Comput. 7, 3578 (2011).
http://dx.doi.org/10.1021/ct200651r
41.
41.P. H. P. Harbach, M. Wormit, and A. Dreuw, J. Chem. Phys. 141, 064113 (2014).
http://dx.doi.org/10.1063/1.4892418
42.
42.M. J. G. Peach, N. Warner, and D. J. Tozer, Mol. Phys. 111, 1271 (2013).
http://dx.doi.org/10.1080/00268976.2013.777481
43.
43.A. A. Voityuk, J. Chem. Phys. 140, 244117 (2014).
http://dx.doi.org/10.1063/1.4884944
44.
44.J. R. Reimers, L. K. McKemmish, R. H. McKenzie, and N. S. Hush, Phys. Chem. Chem. Phys. 17, 24598 (2015).
http://dx.doi.org/10.1039/C5CP02236C
45.
45.W. Liu, B. Lunkenheimer, V. Settels, B. Engels, R. F. Fink, and A. Köhn, J. Chem. Phys. 143, 084106 (2015).
http://dx.doi.org/10.1063/1.4929352
http://aip.metastore.ingenta.com/content/aip/journal/jcp/143/17/10.1063/1.4935178
Loading
/content/aip/journal/jcp/143/17/10.1063/1.4935178
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/143/17/10.1063/1.4935178
2015-11-04
2016-12-09

Abstract

Excited-state descriptors based on the one-particle transition density matrix referring to the exciton picture have been implemented for time-dependent density functional theory. State characters such as local, extended , Rydberg, or charge transfer can be intuitively classified by simple comparison of these descriptors. Strong effects of the choice of the exchange-correlation kernel on the physical nature of excited states can be found and decomposed in detail leading to a new perspective on functional performance and the design of new functionals.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/143/17/1.4935178.html;jsessionid=S5vTvcmDLaTQRDV0lgL1GwhM.x-aip-live-02?itemId=/content/aip/journal/jcp/143/17/10.1063/1.4935178&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/143/17/10.1063/1.4935178&pageURL=http://scitation.aip.org/content/aip/journal/jcp/143/17/10.1063/1.4935178'
Right1,Right2,Right3,