Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.A. Kryshtafovych, K. Fidelis, and J. Moult, “CASP10 results compared to those of previous CASP experiments,” Proteins: Struct., Funct., Bioinf. 82(S2), 164174 (2014).
2.J. Moult, K. Fidelis, A. Kryshtafovych, T. Schwede, and A. Tramontano, “Critical assessment of methods of protein structure prediction (CASP)—Round X,” Proteins: Struct., Funct., Bioinf. 82(S2), 16 (2014).
3.T. Schlick, Molecular Modeling and Simulation: An Interdisciplinary Guide (Springer Science & Business Media, 2010), Vol. 21.
4.J. W. Ponder and F. M. Richards, “An efficient Newton-like method for molecular mechanics energy minimization of large molecules,” J. Comput. Chem. 8(7), 10161024 (1987).
5.K. D. Gibson and H. A. Scheraga, “Revised algorithms for the build-up procedure for predicting protein conformations by energy minimization,” J. Comput. Chem. 8(6), 826834 (1987).
6.J. Yang, R. Yan, A. Roy, D. Xu, J. Poisson, and Y. Zhang, “The I-TASSER suite: Protein structure and function prediction,” Nat. Methods 12(1), 78 (2015).
7.M. R. Hestenes and E. Stiefel, “Methods of conjugate gradients for solving linear systems,” J. Res. Natl. Bur. Stand. 49, 409 (1952).
8.S. Ramachandran, P. Kota, F. Ding, and N. V. Dokholyan, “Automated minimization of steric clashes in protein structures,” Proteins: Struct., Funct., Bioinf. 79(1), 261270 (2011).
9.R. J. Petrella, “Optimization bias in energy-based structure prediction,” J. Theor. Comput. Chem. 12(08), 1341014 (2013).
10.R. E. Bruccoleri and M. Karplus, “Conformational sampling using high-temperature molecular dynamics,” Biopolymers 29(14), 18471862 (1990).
11.H. A. Scheraga, M. Khalili, and A. Liwo, “Protein-folding dynamics: Overview of molecular simulation techniques,” Annu. Rev. Phys. Chem. 58, 5783 (2007).
12.P. Bradley, K. M. Misura, and D. Baker, “Toward high-resolution de novo structure prediction for small proteins,” Science 309(5742), 18681871 (2005).
13.A. Sali, E. Shakhnovich, and M. Karplus, “How does a protein fold?,” Nature 369(6477), 248251 (1994).
14.E. Alm and D. Baker, “Prediction of protein-folding mechanisms from free-energy landscapes derived from native structures,” Proc. Natl. Acad. Sci. U. S. A. 96(20), 1130511310 (1999).
15.E. M. Boczko and C. L. Brooks, “First-principles calculation of the folding free energy of a three-helix bundle protein,” Science 269(5222), 393396 (1995).
16.V. I. Abkevich, A. M. Gutin, and E. I. Shakhnovich, “Free energy landscape for protein folding kinetics: Intermediates, traps, and multiple pathways in theory and lattice model simulations,” J. Chem. Phys. 101(7), 60526062 (1994).
17.A. K. Felts, E. Gallicchio, A. Wallqvist, and R. M. Levy, “Distinguishing native conformations of proteins from decoys with an effective free energy estimator based on the OPLS all-atom force field and the surface generalized Born solvent model,” Proteins: Struct., Funct., Genet. 48(2), 404422 (2002).
18.S. V. Krivov and M. Karplus, “Hidden complexity of free energy surfaces for peptide (protein) folding,” Proc. Natl. Acad. Sci. U. S. A. 101(41), 1476614770 (2004).
19.E. Shakhnovich, G. Farztdinov, A. M. Gutin, and M. Karplus, “Protein folding bottlenecks: A lattice Monte Carlo simulation,” Phys. Rev. Lett. 67(12), 1665 (1991).
20.C. M. Summa and M. Levitt, “Near-native structure refinement using in vacuo energy minimization,” Proc. Natl. Acad. Sci. U. S. A. 104(9), 31773182 (2007).
21.R. Adamczak and J. Meller, “On the transferability of folding and threading potentials and sequence-independent filters for protein folding simulations,” Mol. Phys. 102(11-12), 12911305 (2004).
22.S. E. Toal, D. J. Verbaro, and R. Schweitzer-Stenner, “Role of enthalpy–entropy compensation interactions in determining the conformational propensities of amino acid residues in unfolded peptides,” J. Phys. Chem. B 118(5), 13091318 (2014).
23.J. Schymkowitz, J. Borg, F. Stricher, R. Nys, F. Rousseau, and L. Serrano, “The FoldX web Server: An online force field,” Nucleic Acids Res. 33(Suppl. 2), W382W388 (2005).
24.F. C. Bernstein, T. F. Koetzle, G. J. Williams, E. F. Meyer, M. D. Brice, J. R. Rodgers, O. Kennard, T. Shimanouchi, and M. Tasumi, “The protein data bank,” Eur. J. Biochem. 80(2), 319324 (1977).
25.R. W. Hooft, C. Sander, M. Scharf, and G. Vriend, “The PDBFINDER database: A summary of PDB, DSSP and HSSP information with added value,” Bioinformatics 12(6), 525529 (1996).
26.J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R. D. Skeel, L. Kale, and K. Schulten, “Scalable molecular dynamics with NAMD,” J. Comput. Chem. 26(16), 17811802 (2005).
27.A. D. MacKerell, D. Bashford, M. Bellott, R. L. Dunbrack, J. D. Evanseck, M. J. Field, S. Fischer, J. Gao, H. Guo, and S. Ha, “All-atom empirical potential for molecular modeling and dynamics studies of proteins,” J. Phys. Chem. B 102(18), 35863616 (1998).
28.R. Guerois, J. E. Nielsen, and L. Serrano, “Predicting changes in the stability of proteins and protein complexes: A study of more than 1000 mutations,” J. Mol. Biol. 320(2), 369387 (2002).
29.X.-L. Ji and S.-Q. Liu, “Is stoichiometry-driven protein folding getting out of thermodynamic control?,” J. Biomol. Struct. Dyn. 28(4), 621623 (2011).
30.W. Li, Z. Liu, R. K. Koripella, R. Langlois, S. Sanyal, and J. Frank, “Activation of GTP hydrolysis in mRNA-tRNA translocation by elongation factor G,” Sci. Adv. 1(4), e1500169 (2015).
31.M.-S. Park, “Molecular dynamics simulations of the human glucose transporter GLUT1,” PLoS One 10(4), e0125361 (2015).
32.B. R. Miller III, C. A. Parish, and E. Y. Wu, “Molecular dynamics study of the opening mechanism for DNA polymerase I,” PLoS Comput. Biol. 10(12), e1003961 (2014).
33.B. Kamaraj and A. Bogaerts, “Structure and function of p53-DNA complexes with inactivation and rescue mutations: A molecular dynamics simulation study,” PLoS One 10(8), e0134638 (2015).
34.L. Jiang, X. Zhang, X. Chen, Y. He, L. Qiao, Y. Zhang, G. Li, and Y. Xiang, “Virtual screening and molecular dynamics study of potential negative allosteric modulators of mGluR1 from Chinese herbs,” Molecules 20(7), 1276912786 (2015).
35.T. R. Caulfield, F. C. Fiesel, E. L. Moussaud-Lamodiere, D. F. Dourado, S. C. Flores, and W. Springer, “Phosphorylation by PINK1 releases the UBL domain and initializes the conformational opening of the E3 ubiquitin ligase Parkin,” PLoS Comput. Biol. 10, e1003935 (2014).
36.CHARMM Tutorial, 2014.
37.J. Zhang and J. S. Liu, “On side-chain conformational entropy of proteins,” PLoS Comput. Biol. 2(12), e168 (2006).
38.V. Munoz and L. Serrano, “Intrinsic secondary structure propensities of the amino acids, using statistical Φ–ψ matrices: Comparison with experimental scales,” Proteins: Struct., Funct., Genet. 20(4), 301311 (1994).
39.See supplementary material at for the List S1 of PDB IDs studied in this paper.[Supplementary Material]

Data & Media loading...


Article metrics loading...



This work examines the impact of energy over-minimization on an ensemble of biological molecules subjected to the potential energy minimization procedure in vacuum. In the studied structures, long potential energy minimization stage leads to an increase of the main- and side-chain entropies in proteins. We show that such over-minimization may diverge the protein structures from the near-native attraction basin which possesses a minimum of free energy. We propose a measure based on the Pareto front of total entropy for quality assessment of minimized protein conformation. This measure may help in selection of adequate number of energy minimization steps in protein modelling and, thus, in preservation of the near-native protein conformation.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd