Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/143/17/10.1063/1.4935509
1.
1.R. Sliter and A. F. Vilesov, J. Chem. Phys. 131, 074502 (2009).
http://dx.doi.org/10.1063/1.3194295
2.
2.M. E. Tuckerman, D. Marx, and M. Parrinello, Nature 417, 925 (2002).
http://dx.doi.org/10.1038/nature00797
3.
3.G. Carleo, S. Moroni, and S. Baroni, Phys. Rev. B 80, 094301 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.094301
4.
4.V. Sorkin, E. Polturak, and J. Adler, J. Low Temp. Phys. 143, 141 (2006).
http://dx.doi.org/10.1007/s10909-006-9213-9
5.
5.V. Sorkin, E. Polturak, and J. Adler, Phys. Rev. B 71, 214304 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.214304
6.
6.H. Kitamura, S. Tsuneyuki, T. Ogitsu, and T. Miyake, Nature 404, 259 (2000).
http://dx.doi.org/10.1038/35005027
7.
7.G. Geneste, M. Torrent, F. Bottin, and P. Loubeyre, Phys. Rev. Lett. 109, 155303 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.155303
8.
8.C. J. Pickard and R. J. Needs, Nat. Phys. 3, 473 (2007).
http://dx.doi.org/10.1038/nphys625
9.
9.S. Biermann, D. Hohl, and D. Marx, Solid State Commun. 108, 337341 (1998).
http://dx.doi.org/10.1016/S0038-1098(98)00388-3
10.
10.A. F. Goncharov, R. J. Hemley, H.-K. Mao, and J. Shu, Phys. Rev. Lett. 80, 101 (1998).
http://dx.doi.org/10.1103/PhysRevLett.80.101
11.
11.M. Kuhnel, J. M. Fernandez, G. Tejeda, A. Kalinin, S. Montero, and R. E. Grisenti, Phys. Rev. Lett. 106, 245301 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.245301
12.
12.A. Bickermann, H. Spitzer, H. Stiller, H. Meyer, R. Lechner, and F. Volino, Z. Phys. B 31, 345 (1978).
http://dx.doi.org/10.1007/BF01351543
13.
13.B. A. Vindryaevskii, S. N. Ishmayev, I. P. Sadikov, A. A. Chemyshey, Y. L. Shitikov, G. V. Kobelev, V. A. Sukhoparov, and A. S. Telepnev, JETP Lett. 62, 822 (1995).
14.
14.S. Ishmaev, G. Kobelev, I. Sadikov, V. Sukhoparov, A. Chernyshov, A. Telepnev, B. A. Vindryaevskii, and Y. Shitikov, Physica B 234-236, 30 (1997).
http://dx.doi.org/10.1016/S0921-4526(96)00867-8
15.
15.F. Konigsmann, N. Schwentner, and D. T. Anderson, Phys. Chem. Chem. Phys. 15, 17435 (2013).
http://dx.doi.org/10.1039/c3cp52055b
16.
16.K. N. Klump, O. Schnepp, and L. H. Nosanow, Phys. Rev. B 1, 2496 (1970).
http://dx.doi.org/10.1103/PhysRevB.1.2496
17.
17.M. L. Klein and T. R. Koehler, Phys. Lett. A 33, 253 (1970).
http://dx.doi.org/10.1016/0375-9601(70)90762-0
18.
18.K. Nagao, T. Takezawa, and H. Nagara, Phys. Rev. B 59, 13741 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.13741
19.
19.H. Saito, H. Nagao, K. Nishikawa, and K. Kinugawa, J. Chem. Phys. 119, 953 (2003).
http://dx.doi.org/10.1063/1.1578474
20.
20.H. Mao and R. J. Hemley, Rev. Mod. Phys. 66, 671 (1994).
http://dx.doi.org/10.1103/RevModPhys.66.671
21.
21.J. M. McMahon, M. A. Morales, C. Pierleoni, and D. M. Ceperley, Rev. Mod. Phys. 84, 1607 (2012).
http://dx.doi.org/10.1103/RevModPhys.84.1607
22.
22.K. Nagao, S. A. Bonev, A. Bergara, and N. W. Ashcroft, Phys. Rev. Lett. 90, 035501 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.035501
23.
23.M. Dion, H. Rydberg, E. Schroder, D. C. Langreth, and B. I. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.246401
24.
24.G. Garberoglio and J. K. Johnson, ACS Nano 4, 1703 (2010).
http://dx.doi.org/10.1021/nn901592x
25.
25.K. Hyeon-Deuk and K. Ando, Phys. Rev. B 90, 165132 (2014).
http://dx.doi.org/10.1103/PhysRevB.90.165132
26.
26.K. Hyeon-Deuk and K. Ando, J. Chem. Phys. 140, 171101 (2014).
http://dx.doi.org/10.1063/1.4874635
27.
27.K. Hyeon-Deuk and K. Ando, Chem. Phys. Lett. 532, 124 (2012).
http://dx.doi.org/10.1016/j.cplett.2012.02.073
28.
28.F. Grossmann, Chem. Phys. Lett. 262, 470 (1996).
http://dx.doi.org/10.1016/0009-2614(96)01110-4
29.
29.F. Grossmann and T. Kramer, J. Phys. A 44, 445309 (2011).
http://dx.doi.org/10.1088/1751-8113/44/44/445309
30.
30.I. Georgescu, J. Deckman, L. J. Fredrickson, and V. A. Mandelshtam, J. Chem. Phys. 134, 174109 (2011).
http://dx.doi.org/10.1063/1.3585648
31.
31.E. Heatwole and O. V. Prezhdo, J. Chem. Phys. 126, 204108 (2007).
http://dx.doi.org/10.1063/1.2742384
32.
32.S.-Y. Lee and E. J. Heller, J. Chem. Phys. 76, 3035 (1982).
http://dx.doi.org/10.1063/1.443342
33.
33.M. H. Beck, A. Jackle, G. A. Worth, and H.-D. Meyer, Phys. Rep. 324, 1 (2000).
http://dx.doi.org/10.1016/S0370-1573(99)00047-2
34.
34.I. Burghardt, K. Giri, and G. A. Worth, J. Chem. Phys. 129, 174104 (2008).
http://dx.doi.org/10.1063/1.2996349
35.
35.D. V. Shalashilin and M. S. Child, J. Chem. Phys. 128, 054102 (2008).
http://dx.doi.org/10.1063/1.2828509
36.
36.K. Hyeon-Deuk and K. Ando, J. Chem. Phys. 131, 064501 (2009).
http://dx.doi.org/10.1063/1.3200937
37.
37.K. Hyeon-Deuk and K. Ando, J. Chem. Phys. 132, 164507 (2010).
http://dx.doi.org/10.1063/1.3397809
38.
38.See supplementary material at http://dx.doi.org/10.1063/1.4935509 for real-time movies of solidp-H2at 2.5 K and at 13 K, and additional figures for intra- and inter-molecular structures and dynamics of the solidp-H2 under vapor pressure.[Supplementary Material]
39.
39.R. J. Hemley and H.-K. Mao, Elementary Processes in Dense Plasmas (Addison-Wesley, Reading, 1995).
40.
40.P. Loubeyre, M. Jean-Louis, and I. F. Silvera, Phys. Rev. B 43, 10191 (1991).
http://dx.doi.org/10.1103/PhysRevB.43.10191
41.
41.A. Driessen, E. van der Poll, and I. F. Silvera, Phys. Rev. B 30, 2517 (1984).
http://dx.doi.org/10.1103/PhysRevB.30.2517
http://aip.metastore.ingenta.com/content/aip/journal/jcp/143/17/10.1063/1.4935509
Loading
/content/aip/journal/jcp/143/17/10.1063/1.4935509
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/143/17/10.1063/1.4935509
2015-11-05
2016-09-29

Abstract

Nuclear quantum effects play a dominant role in determining the phase diagram of H. With a recently developed quantum molecular dynamics simulation method, we examine dynamical and structural characters of solid H under vapor pressure, demonstrating the difference from liquid and high-pressure solid H. While stable hexagonal close-packed lattice structures are reproduced with reasonable lattice phonon frequencies, the most stable adjacent configuration exhibits a zigzag structure, in contrast with the T-shape liquid configuration. The periodic angular distributions of H molecules indicate that molecules are not a completely free rotor in the vapor-pressure solid reflecting asymmetric potentials from surrounding molecules on adjacent lattice sites. Discrete jumps of librational and H–H vibrational frequencies as well as H–H bond length caused by structural rearrangements under vapor pressure effectively discriminate the liquid and solid phases. The obtained dynamical and structural information of the vapor-pressure H solid will be useful in monitoring thermodynamic states of condensed hydrogens.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/143/17/1.4935509.html;jsessionid=1-VULpsq61jrYf7c2cN41XoH.x-aip-live-03?itemId=/content/aip/journal/jcp/143/17/10.1063/1.4935509&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/143/17/10.1063/1.4935509&pageURL=http://scitation.aip.org/content/aip/journal/jcp/143/17/10.1063/1.4935509'
Right1,Right2,Right3,