Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/143/18/10.1063/1.4934990
1.
1.R. Grima and S. Schnell, Essays Biochem. 45, 41 (2008).
http://dx.doi.org/10.1042/bse0450041
2.
2.D. T. Gillespie, Annu. Rev. Phys. Chem. 58, 35 (2007).
http://dx.doi.org/10.1146/annurev.physchem.58.032806.104637
3.
3.D. T. Gillespie, J. Phys. Chem. 81, 2340 (1977).
http://dx.doi.org/10.1021/j100540a008
4.
4.C. A. Gómez-Uribe, G. C. Verghese, and A. R. Tzafriri, J. Chem. Phys. 129, 244112 (2008).
http://dx.doi.org/10.1063/1.3050350
5.
5.D. T. Gillespie, Y. Cao, K. R. Sanft, and L. R. Petzold, J. Chem. Phys. 130, 064103 (2009).
http://dx.doi.org/10.1063/1.3072704
6.
6.D. A. McQuarrie, J. Appl. Probab. 4, 413 (1967).
http://dx.doi.org/10.2307/3212214
7.
7.R. Grima, J. Chem. Phys. 136, 154105 (2012).
http://dx.doi.org/10.1063/1.3702848
8.
8.L. Ferm, P. Lötstedt, and A. Hellander, J. Sci. Comput. 34, 127 (2008).
http://dx.doi.org/10.1007/s10915-007-9179-z
9.
9.M. Ullah and O. Wolkenhauer, J. Theor. Biol. 260, 340 (2009).
http://dx.doi.org/10.1016/j.jtbi.2009.05.022
10.
10.C. A. Gomez-Uribe and G. C. Verghese, J. Chem. Phys. 126, 024109 (2007).
http://dx.doi.org/10.1063/1.2408422
11.
11.A. Ale, P. Kirk, and M. P. H. Stumpf, J. Chem. Phys. 138, 174101 (2013).
http://dx.doi.org/10.1063/1.4802475
12.
12.I. Nasell, Theor. Popul. Biol. 64, 233 (2003).
http://dx.doi.org/10.1016/S0040-5809(03)00074-1
13.
13.M. J. Keeling, J. Theor. Biol. 205, 269 (2000).
http://dx.doi.org/10.1006/jtbi.2000.2066
14.
14.J. Hespanha, in Proceedings of the 3rd International Symposium on Communications, Control and Signal Processing (IEEE, 2008), Vol. 142, p. 2063.
15.
15.A. Singh and J. P. Hespanha, in 45th IEEE Conference on Decision and Control (IEEE, 2006).
16.
16.P. Milner, C. S. Gillespie, and D. J. Wilkinson, Stat. Comput. 23, 287 (2013).
http://dx.doi.org/10.1007/s11222-011-9310-8
17.
17.C. Zechner et al., Proc. Natl. Acad. Sci. U. S. A. 109, 8340 (2012).
http://dx.doi.org/10.1073/pnas.1200161109
18.
18.A. Singh and J. P. Hespanha, IEEE Trans. Autom. Control 56, 414 (2011).
http://dx.doi.org/10.1109/TAC.2010.2088631
19.
19.D. Schnoerr, G. Sanguinetti, and R. Grima, J. Chem. Phys. 141, 084103 (2014).
http://dx.doi.org/10.1063/1.4892838
20.
20.J. Hespanha, StochDynTools — A MATLAB toolbox to compute moment dynamics for stochastic networks of bio-chemical reactions. Available at http://www.ece.ucsb.edu/~hespanha, 2007.
21.
21.C. Gillespie, IET Syst. Biol. 3, 52 (2009).
http://dx.doi.org/10.1049/iet-syb:20070031
22.
22.P. Azunre, C. Gómez-Uribe, and G. Verghese, IET Syst. Biol. 5, 325-335 (2011).
http://dx.doi.org/10.1049/iet-syb.2011.0013
23.
23.N. G. van Kampen, Stochastic Processes in Physics and Chemistry (Elsevier, 2007).
24.
24.Lognormal Distributions: Theory and Applications, edited by E. L. Crow and K. Shimizu (Dekker, New York, 1988).
25.
25.F. Schlögl, Z. Phys. 253, 147 (1972).
http://dx.doi.org/10.1007/BF01379769
26.
26.T. Wilhelm, BMC Syst. Biol. 3, 90 (2009).
http://dx.doi.org/10.1186/1752-0509-3-90
27.
27.P. Thomas, H. Matuschek, and R. Grima, PLoS One 7, e38518 (2012).
http://dx.doi.org/10.1371/journal.pone.0038518
28.
28.A. Goldbeter and D. E. Koshland, Proc. Natl. Acad. Sci. U. S. A. 78, 6840 (1981).
http://dx.doi.org/10.1073/pnas.78.11.6840
29.
29.I. Prigogine and R. Lefever, J. Chem. Phys. 48, 1695 (1968).
http://dx.doi.org/10.1063/1.1668896
30.
30.R. Lefever, G. Nicolis, and P. Borckmans, J. Chem. Soc., Faraday Trans. 1 84, 1013 (1988).
http://dx.doi.org/10.1039/f19888401013
31.
31.P. O. Westermark et al., PLoS Comput. Biol. 5, 1000580 (2009).
http://dx.doi.org/10.1371/journal.pcbi.1000580
32.
32.C. Troein et al., Plant J. 66, 375 (2011).
http://dx.doi.org/10.1111/j.1365-313X.2011.04489.x
33.
33.G. Kurosawa and A. Goldbeter, J. Theor. Biol. 242, 478 (2006).
http://dx.doi.org/10.1016/j.jtbi.2006.03.016
34.
34.M. Voliotis, P. Thomas, R. Grima, and C. Bowsher, “Stochastic simulation of biomolecular networks in dynamic environments,” preprint arXiv:1511.01268.
35.
35.See supplementary material at http://dx.doi.org/10.1063/1.4934990 for software package MOCA, as well as tutorial and example files.[Supplementary Material]
36.
36.P. Thomas, A. V. Straube, and R. Grima, J. Chem. Phys. 135, 181103 (2011).
http://dx.doi.org/10.1063/1.3661156
37.
37.E. Lakatos, A. Ale, P. Kirk, and M. P. H. Stumpf, J. Chem. Phys. 143, 094107 (2015).
http://dx.doi.org/10.1063/1.4929837
http://aip.metastore.ingenta.com/content/aip/journal/jcp/143/18/10.1063/1.4934990
Loading
/content/aip/journal/jcp/143/18/10.1063/1.4934990
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/143/18/10.1063/1.4934990
2015-11-12
2016-12-08

Abstract

In recent years, moment-closure approximations (MAs) of the chemical master equation have become a popular method for the study of stochastic effects in chemical reactionsystems. Several different MA methods have been proposed and applied in the literature, but it remains unclear how they perform with respect to each other. In this paper, we study the normal, Poisson, log-normal, and central-moment-neglect MAs by applying them to understand the stochastic properties of chemical systems whose deterministic rate equations show the properties of bistability, ultrasensitivity, and oscillatory behaviour. Our results suggest that the normal MA is favourable over the other studied MAs. In particular, we found that (i) the size of the region of parameter space where a closure gives physically meaningful results, e.g., positive mean and variance, is considerably larger for the normal closure than for the other three closures, (ii) the accuracy of the predictions of the four closures (relative to simulations using the stochastic simulation algorithm) is comparable in those regions of parameter space where all closures give physically meaningful results, and (iii) the Poisson and log-normal MAs are not uniquely defined for systems involving conservation laws in molecule numbers. We also describe the new software package MOCA which enables the automated numerical analysis of various MA methods in a graphical user interface and which was used to perform the comparative analysis presented in this paper. MOCA allows the user to develop novel closure methods and can treat polynomial, non-polynomial, as well as time-dependent propensity functions, thus being applicable to virtually any chemical reactionsystem.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/143/18/1.4934990.html;jsessionid=btelLFaN8SUIokG_j0Ffqy7V.x-aip-live-03?itemId=/content/aip/journal/jcp/143/18/10.1063/1.4934990&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/143/18/10.1063/1.4934990&pageURL=http://scitation.aip.org/content/aip/journal/jcp/143/18/10.1063/1.4934990'
Right1,Right2,Right3,