Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/143/18/10.1063/1.4935180
1.
1.F. Noé and S. Fischer, Curr. Opin. Struct. Biol. 18, 154 (2008).
http://dx.doi.org/10.1016/j.sbi.2008.01.008
2.
2.G. R. Bowman, K. A. Beauchamp, G. Boxer, and V. S. Pande, J. Chem. Phys. 131, 124101 (2009).
http://dx.doi.org/10.1063/1.3216567
3.
3.V. Pande, K. Beauchamp, and G. Bowman, Methods 52, 99 (2010).
http://dx.doi.org/10.1016/j.ymeth.2010.06.002
4.
4.J.-H. Prinz, H. Wu, M. Sarich, B. Keller, M. Senne, M. Held, J. D. Chodera, C. Schütte, and F. Noé, J. Chem. Phys. 134, 174105 (2011).
http://dx.doi.org/10.1063/1.3565032
5.
5.J.-H. Prinz, B. Keller, and F. Noé, Phys. Chem. Chem. Phys. 13, 16912 (2011).
http://dx.doi.org/10.1039/c1cp21258c
6.
6.F. Rao and A. Caflisch, J. Mol. Biol. 342, 299 (2004).
http://dx.doi.org/10.1016/j.jmb.2004.06.063
7.
7.D. Prada-Gracia, J. Gómez-Gardeñes, P. Echenique, and F. Falo, PLoS Comput. Biol. 5, e1000415 (2009).
http://dx.doi.org/10.1371/journal.pcbi.1000415
8.
8.A. Dickson and C. L. Brooks, J. Am. Chem. Soc. 135, 4729 (2013).
http://dx.doi.org/10.1021/ja311077u
9.
9.J. N. Onuchic, N. D. Socci, Z. Luthey-Schulten, and P. G. Wolynes, Folding Des. 1, 441 (1996).
http://dx.doi.org/10.1016/S1359-0278(96)00060-0
10.
10.C. M. Dobson, A. S˜ali, and M. Karplus, Angew. Chem., Int. Ed. 37, 868 (1998).
http://dx.doi.org/10.1002/(SICI)1521-3773(19980420)37:7<868::AID-ANIE868>3.0.CO;2-H
11.
11.S. V. Krivov and M. Karplus, Proc. Natl. Acad. Sci. U. S. A. 101, 14766 (2004).
http://dx.doi.org/10.1073/pnas.0406234101
12.
12.R. B. Best and G. Hummer, Proc. Natl. Acad. Sci. U. S. A. 102, 6732 (2005).
http://dx.doi.org/10.1073/pnas.0408098102
13.
13.S. V. Krivov, J. Phys. Chem. B 115, 12315 (2011).
http://dx.doi.org/10.1021/jp208585r
14.
14.M. A. Rohrdanz, W. Zheng, M. Maggioni, and C. Clementi, J. Chem. Phys. 134, 124116 (2011).
http://dx.doi.org/10.1063/1.3569857
15.
15.D. E. Shaw, P. Maragakis, K. Lindorff-Larsen, S. Piana, R. O. Dror, M. P. Eastwood, J. A. Bank, J. M. Jumper, J. K. Salmon, Y. Shan, and W. Wriggers, Science 330, 341 (2010).
http://dx.doi.org/10.1126/science.1187409
16.
16.P. V. Banushkina and S. V. Krivov, J. Chem. Theory Comput. 9, 5257 (2013).
http://dx.doi.org/10.1021/ct400651z
17.
17.S. Jungblut, A. Singraber, and C. Dellago, Mol. Phys. 111, 3527 (2013).
http://dx.doi.org/10.1080/00268976.2013.832820
18.
18.P. G. Bolhuis, C. Dellago, and D. Chandler, Proc. Natl. Acad. Sci. U. S. A. 97, 5877 (2000).
http://dx.doi.org/10.1073/pnas.100127697
19.
19.G. Berezovska, D. Prada-Gracia, and F. Rao, J. Chem. Phys. 139, 035102 (2013).
http://dx.doi.org/10.1063/1.4812837
20.
20.M. Ceriotti, G. A. Tribello, and M. Parrinello, Proc. Natl. Acad. Sci. U. S. A. 108, 13023 (2011).
http://dx.doi.org/10.1073/pnas.1108486108
21.
21.Y. Mu, P. H. Nguyen, and G. Stock, Proteins 58, 45 (2005).
http://dx.doi.org/10.1002/prot.20310
22.
22.L. O. Hedges, R. L. Jack, J. P. Garrahan, and D. Chandler, Science 323, 1309 (2009).
http://dx.doi.org/10.1126/science.1166665
23.
23.H. Yu, A. N. Gupta, X. Liu, K. Neupane, A. M. Brigley, I. Sosova, and M. T. Woodside, Proc. Natl. Acad. Sci. U. S. A. 109, 14452 (2012).
http://dx.doi.org/10.1073/pnas.1206190109
24.
24.P. Schuetz, R. Wuttke, B. Schuler, and A. Caflisch, J. Phys. Chem. B 114, 15227 (2010).
http://dx.doi.org/10.1021/jp1053698
25.
25.S. V. Krivov, H. Fenton, P. J. Goldsmith, R. K. Prasad, J. Fisher, and E. Paci, PLoS Comput. Biol. 10, e1003685 (2014).
http://dx.doi.org/10.1371/journal.pcbi.1003685
26.
26.S. V. Krivov, Phys. Rev. E 84, 011135 (2011).
http://dx.doi.org/10.1103/PhysRevE.84.011135
27.
27.S. V. Krivov, PLoS Comput. Biol. 6, e1000921 (2010).
http://dx.doi.org/10.1371/journal.pcbi.1000921
28.
28.S. V. Krivov, J. Chem. Theory Comput. 9, 135 (2013).
http://dx.doi.org/10.1021/ct3008292
29.
29.A. Altis, P. H. Nguyen, R. Hegger, and G. Stock, J. Chem. Phys. 126, 244111 (2007).
http://dx.doi.org/10.1063/1.2746330
30.
30.D. Antoniou and S. D. Schwartz, J. Phys. Chem. B 115, 2465 (2011).
http://dx.doi.org/10.1021/jp111682x
31.
31.R. R. Coifman and S. Lafon, Appl. Comput. Harmonic Anal. 21, 5 (2006).
http://dx.doi.org/10.1016/j.acha.2006.04.006
32.
32.B. Nadler, S. Lafon, R. R. Coifman, and I. G. Kevrekidis, Appl. Comput. Harmonic Anal. 21, 113 (2006).
http://dx.doi.org/10.1016/j.acha.2005.07.004
33.
33.A. L. Ferguson, A. Z. Panagiotopoulos, I. G. Kevrekidis, and P. G. Debenedetti, Chem. Phys. Lett. 509, 1 (2011).
http://dx.doi.org/10.1016/j.cplett.2011.04.066
34.
34.J. B. Tenenbaum, V. d. Silva, and J. C. Langford, Science 290, 2319 (2000).
http://dx.doi.org/10.1126/science.290.5500.2319
35.
35.O. F. Lange and H. Grubmüller, Proteins 70, 1294 (2008).
http://dx.doi.org/10.1002/prot.21618
36.
36.W. Li and A. Ma, Mol. Simul. 40, 784 (2014).
http://dx.doi.org/10.1080/08927022.2014.907898
37.
37.D. J. Wales, J. Chem. Phys. 142, 130901 (2015).
http://dx.doi.org/10.1063/1.4916307
38.
38.B. Peters, J. Phys. Chem. B 119, 6349 (2015).
http://dx.doi.org/10.1021/acs.jpcb.5b02547
39.
39.L. Onsager, Phys. Rev. 54, 554 (1938).
http://dx.doi.org/10.1103/PhysRev.54.554
40.
40.R. Du, V. S. Pande, A. Y. Grosberg, T. Tanaka, and E. S. Shakhnovich, J. Chem. Phys. 108, 334 (1998).
http://dx.doi.org/10.1063/1.475393
41.
41.P. L. Geissler, C. Dellago, and D. Chandler, J. Phys. Chem. B 103, 3706 (1999).
http://dx.doi.org/10.1021/jp984837g
42.
42.A. Ma and A. R. Dinner, J. Phys. Chem. B 109, 6769 (2005).
http://dx.doi.org/10.1021/jp045546c
43.
43.B. Peters and B. L. Trout, J. Chem. Phys. 125, 054108 (2006).
http://dx.doi.org/10.1063/1.2234477
44.
44.C. D. Snow, Y. M. Rhee, and V. S. Pande, Biophys. J. 91, 14 (2006).
http://dx.doi.org/10.1529/biophysj.105.075689
45.
45.G. Hummer, J. Chem. Phys. 120, 516 (2003).
http://dx.doi.org/10.1063/1.1630572
46.
46.W. E and E. Vanden-Eijnden, J. Stat. Phys. 123, 503 (2006).
http://dx.doi.org/10.1007/s10955-005-9003-9
47.
47.J. D. Chodera and V. S. Pande, Phys. Rev. Lett. 107, 098102 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.098102
48.
48.S. V. Krivov, J. Phys. Chem. B 115, 11382 (2011).
http://dx.doi.org/10.1021/jp205231b
49.
49.A. M. Berezhkovskii and A. Szabo, J. Phys. Chem. B 117, 13115 (2013).
http://dx.doi.org/10.1021/jp403043a
50.
50.J. Lu and E. Vanden-Eijnden, J. Chem. Phys. 141, 044109 (2014).
http://dx.doi.org/10.1063/1.4890367
51.
51.C. R. Schwantes and V. S. Pande, J. Chem. Theory Comput. 11, 600 (2015).
http://dx.doi.org/10.1021/ct5007357
52.
52.A. Berezhkovskii, G. Hummer, and A. Szabo, J. Chem. Phys. 130, 205102 (2009).
http://dx.doi.org/10.1063/1.3139063
53.
53.A. Berezhkovskii and A. Szabo, J. Chem. Phys. 121, 9186 (2004).
http://dx.doi.org/10.1063/1.1802674
54.
54.F. Nüske, B. G. Keller, G. Pérez-Hernández, A. S. J. S. Mey, and F. Noé, J. Chem. Theory Comput. 10, 1739 (2014).
http://dx.doi.org/10.1021/ct4009156
55.
55.S. V. Krivov and M. Karplus, Proc. Natl. Acad. Sci. U. S. A. 105, 13841 (2008).
http://dx.doi.org/10.1073/pnas.0800228105
56.
56.P. V. Banushkina and S. V. Krivov, J. Comput. Chem. 36, 878 (2015).
http://dx.doi.org/10.1002/jcc.23868
57.
57.K. Lindorff-Larsen, S. Piana, R. O. Dror, and D. E. Shaw, Science 334, 517 (2011).
http://dx.doi.org/10.1126/science.1208351
58.
58.J. Freeman, N. Vladimirov, T. Kawashima, Y. Mu, N. J. Sofroniew, D. V. Bennett, J. Rosen, C.-T. Yang, L. L. Looger, and M. B. Ahrens, Nat. Methods 11, 941 (2014).
http://dx.doi.org/10.1038/nmeth.3041
http://aip.metastore.ingenta.com/content/aip/journal/jcp/143/18/10.1063/1.4935180
Loading
/content/aip/journal/jcp/143/18/10.1063/1.4935180
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/143/18/10.1063/1.4935180
2015-11-11
2016-12-03

Abstract

State of the art realistic simulations of complex atomic processes commonly produce trajectories of large size, making the development of automated analysis tools very important. A popular approach aimed at extracting dynamical information consists of projecting these trajectories into optimally selected reaction coordinates or collective variables. For equilibrium dynamics between any two boundary states, the committor function also known as the folding probability in protein folding studies is often considered as the optimal coordinate. To determine it, one selects a functional form with many parameters and trains it on the trajectories using various criteria. A major problem with such an approach is that a poor initial choice of the functional form may lead to sub-optimal results. Here, we describe an approach which allows one to optimize the reaction coordinate without selecting its functional form and thus avoiding this source of error.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/143/18/1.4935180.html;jsessionid=Ze40t3RAsGN5Xo4B6fZxK4OY.x-aip-live-03?itemId=/content/aip/journal/jcp/143/18/10.1063/1.4935180&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/143/18/10.1063/1.4935180&pageURL=http://scitation.aip.org/content/aip/journal/jcp/143/18/10.1063/1.4935180'
Right1,Right2,Right3,