Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/143/18/10.1063/1.4935510
1.
1.L. Pauling, The Nature of the Chemical Bond and the Structure of Molecules and Crystals (Cornell University Press, Ithaca, NY, 1939).
2.
2.G. A. Jeffrey and W. Saenger, Hydrogen Bonding in Biological Structures (Springer-Verlag, Berlin, 1991).
3.
3.G. R. Desiraju and T. Steiner, The Weak Hydrogen Bond in Structural Chemistry and Biology (Oxford University Press, Chichester, 1999).
4.
4.G. P. Johari and W. Dannhauser, J. Chem. Phys. 48, 5114 (1968).
http://dx.doi.org/10.1063/1.1668182
5.
5.J. K. Vij, W. G. Scaife, and J. H. Calderwood, J. Phys. D: Appl. Phys. 11, 545 (1978).
http://dx.doi.org/10.1088/0022-3727/11/4/018
6.
6.C. A. Angell, Annu. Rev. Phys. Chem. 55, 559 (2004).
http://dx.doi.org/10.1146/annurev.physchem.55.091602.094156
7.
7.C. M. Roland, S. Bair, and R. Casalini, J. Chem. Phys. 125, 124508 (2006).
http://dx.doi.org/10.1063/1.2346679
8.
8.A. Döss, M. Paluch, H. Sillescu, and G. Hinze, Phys. Rev. Lett. 88, 95701 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.095701
9.
9.A. Reiser, G. Kasper, and S. Hunklinger, Phys. Rev. B 72, 094204 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.094204
10.
10.M. Paluch, R. Casalini, S. Hensel-Bielowka, and C. M. Roland, J. Chem. Phys. 116, 9839 (2002).
http://dx.doi.org/10.1063/1.1473652
11.
11.P. Debye, Polar Molecules (Chemical Catalog Company, New York, 1929).
12.
12.D. W. Davidson and R. H. Cole, J. Chem. Phys. 19, 1484 (1951).
http://dx.doi.org/10.1063/1.1748105
13.
13.P. Girard and B. Abadie, Trans. Faraday Soc. 42, 40 (1946).
http://dx.doi.org/10.1039/tf946420a040
14.
14.B. Jakobsen, C. Maggi, T. Christensen, and J. C. Dyre, J. Chem. Phys. 129, 184502 (2008).
http://dx.doi.org/10.1063/1.3007988
15.
15.S. S. N. Murthy and S. K. Nayak, J. Chem. Phys. 99, 5362 (1993).
http://dx.doi.org/10.1063/1.466187
16.
16.C. Hansen, F. Stickel, T. Berger, R. Richert, and E. W. Fischer, J. Chem. Phys. 107, 1086 (1997).
http://dx.doi.org/10.1063/1.474456
17.
17.L.-M. Wang and R. Richert, J. Chem. Phys. 121, 11170 (2004).
http://dx.doi.org/10.1063/1.1811072
18.
18.H. Fröhlich, Theory of Dielectrics (Clarendon, Oxford, 1958).
19.
19.G. Oster and J. G. Kirkwood, J. Chem. Phys. 11, 175 (1943).
http://dx.doi.org/10.1063/1.1723823
20.
20.F. X. Hassion and R. H. Cole, J. Chem. Phys. 23, 1756 (1955).
http://dx.doi.org/10.1063/1.1740575
21.
21.C. J. F. Böttcher, Theory of Electric Polarization (Elsevier, Amsterdam, 1973).
22.
22.C. Gainaru, R. Meier, S. Schildmann, C. Lederle, W. Hiller, E. A. Rössler, and R. Böhmer, Phys. Rev. Lett. 105, 258303 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.258303
23.
23.C. Gainaru, R. Figuli, T. Hecksher, B. Jakobsen, J. C. Dyre, M. Wilhelm, and R. Böhmer, Phys. Rev. Lett. 112, 098301 (2014).
http://dx.doi.org/10.1103/PhysRevLett.112.098301
24.
24.C. Gainaru, M. Wikarek, S. Pawlus, M. Paluch, R. Figuli, M. Wilhelm, T. Hecksher, B. Jakobsen, J. C. Dyre, and R. Böhmer, Colloid Polym. Sci. 292, 19131921 (2014).
http://dx.doi.org/10.1007/s00396-014-3274-0
25.
25.T. Hecksher and B. Jakobsen, J. Chem. Phys. 141, 101104 (2014).
http://dx.doi.org/10.1063/1.4895095
26.
26.Y. Wang, P. J. Griffin, A. Holt, F. Fan, and A. P. Sokolov, J. Chem. Phys. 140, 104510 (2014).
http://dx.doi.org/10.1063/1.4867913
27.
27.R. Böhmer, C. Gainaru, and R. Richert, Phys. Rep. 545, 125195 (2014).
http://dx.doi.org/10.1016/j.physrep.2014.07.005
28.
28.V. V. Levin and Y. D. Feldman, Chem. Phys. Lett. 87, 162164 (1982).
http://dx.doi.org/10.1016/0009-2614(82)83579-3
29.
29.L. P. Singh, C. Alba-Simionesco, and R. Richert, J. Chem. Phys. 139, 144503 (2013).
http://dx.doi.org/10.1063/1.4823998
30.
30.W. Dannhauser, J. Chem. Phys. 48, 19111917 (1968).
http://dx.doi.org/10.1063/1.1668989
31.
31.G. Johari and W. Dannhauser, J. Phys. Chem. 72, 32733276 (1968).
http://dx.doi.org/10.1021/j100855a030
32.
32.G. P. Johari, O. E. Kalinovskaya, and J. K. Vij, J. Chem. Phys. 114, 4634 (2001).
http://dx.doi.org/10.1063/1.1346635
33.
33.L.-M. Wang and R. Richert, J. Phys. Chem. B 109, 11091 (2005).
http://dx.doi.org/10.1021/jp051965d
34.
34.M. Preuß, C. Gainaru, T. Hecksher, S. Bauer, J. C. Dyre, R. Richert, and R. Böhmer, J. Chem. Phys. 137, 144502 (2012).
http://dx.doi.org/10.1063/1.4755754
35.
35.Y. Gao, D. Bi, X. Li, R. Liu, Y. Tian, and L.-M. Wang, J. Chem. Phys. 139, 024503 (2013).
http://dx.doi.org/10.1063/1.4812743
36.
36.Y. Gao, W. Tu, Z. Chen, Y. Tian, R. Liu, and L.-M. Wang, J. Chem. Phys. 139, 164504 (2013).
http://dx.doi.org/10.1063/1.4825398
37.
37.R. Singh and L. P. Richert, Phys. Rev. Lett. 109, 167802 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.167802
38.
38.X. Li, Z. Chen, Z. Li, Y. Gao, W. Tu, X. Li, Y. Zhang, Y.-D. Liu, and L.-M. Wang, J. Chem. Phys. 141, 104506 (2014).
http://dx.doi.org/10.1063/1.4895066
39.
39.L. P. Singh, A. Raihane, C. Alba-Simionesco, and R. Richert, J. Chem. Phys. 142, 014501 (2015).
http://dx.doi.org/10.1063/1.4904908
40.
40.O. E. Kalinovskaya and J. K. Vij, J. Phys. Chem. A 105, 5061 (2001).
http://dx.doi.org/10.1021/jp0040695
41.
41.K. Grzybowska, S. Pawlus, M. Mierzwa, M. Paluch, and K. L. Ngai, J. Chem. Phys. 125, 144507 (2006).
http://dx.doi.org/10.1063/1.2354492
42.
42.N. Lou, Y. Wang, X. Li, H. Li, P. Wang, C. Wesdemiotis, A. P. Sokolov, and H. Xiong, Macromolecules 46, 3160 (2013).
http://dx.doi.org/10.1021/ma400088w
43.
43.L. M. Wang and R. Richert, J. Chem. Phys. 123, 054516 (2005).
http://dx.doi.org/10.1063/1.1997135
44.
44. The geometries of 2-ethylohexanol, 2-ethylhexylamine, and 2-ethylhexanethiol molecules, as well as the 5-molecular systems in the ring and the chain configurations, were optimized using Becke’s hybrid exchange and correlated three-parameter with the Lee-Yang-Parr correlation functional (B3LYP) at standard Gaussian basis sets 6-31G(d,p). These calculations were carried out in the gas phase using density functional theory (DFT) approach and the Gaussian09 software package.
45.
45.T. Christensen and N. B. Olsen, Rev. Sci. Instrum. 66, 5019 (1995).
http://dx.doi.org/10.1063/1.1146126
46.
46.See supplementary material at http://dx.doi.org/10.1063/1.4935510 for information about experimental methods and additional results (comparison of the dielectric and shear mechanical dynamics and theoretical calculations of the dipole moment for the chain and ring like structures).[Supplementary Material]
47.
47.T. Hecksher, N. B. Olsen, K. A. Nelson, J. C. Dyre, and T. Christensen, J. Chem. Phys. 138, 12A543 (2013).
http://dx.doi.org/10.1063/1.4789946
48.
48.See http://glass.ruc.dk/data/ for “Glass and Time” data repository.
49.
49.J. D. Ferry, Viscoelastic Properties of Polymers (John Willey & Sons, Inc., 1980).
50.
50.R. W. Gray, G. Harrison, and J. Lamb, Proc. R. Soc. A 356, 77 (1977).
http://dx.doi.org/10.1098/rspa.1977.0122
51.
51.L. A. Roed, D. Gundermann, J. C. Dyre, and K. Niss, J. Chem. Phys. 139, 101101 (2013).
http://dx.doi.org/10.1063/1.4821163
52.
52.W. Xiao, J. Tofteskov, T. V. Christensen, J. C. Dyre, and K. Niss, J. Non-Cryst. Solids 407, 190 (2015).
http://dx.doi.org/10.1016/j.jnoncrysol.2014.08.041
53.
53.B. Jakobsen, K. Niss, C. Maggi, N. B. Olsen, T. Christensen, and J. C. Dyre, J. Non-Cryst. Solids 357, 267 (2011).
http://dx.doi.org/10.1016/j.jnoncrysol.2010.08.010
54.
54. We obtain the following values: G = 0.7 GPa for 2-ethyl-1-hexylamine at 160 K, G = 0.79 GPa for 2-ethyl-1-hexanethiol at 137 K, G = 0.97 GPa for 5PPE at 260 K. Dielectric and shear mechanical data for amine and thiol derivatives of 2-ethyl-1-hexanol can be found in “Glass and Time” data repository.
http://aip.metastore.ingenta.com/content/aip/journal/jcp/143/18/10.1063/1.4935510
Loading
/content/aip/journal/jcp/143/18/10.1063/1.4935510
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/143/18/10.1063/1.4935510
2015-11-12
2016-12-05

Abstract

In this paper, we present results of dielectric and shear-mechanical studies for amine (2-ethyl-1-hexylamine) and thiol (2-ethyl-1-hexanethiol) derivatives of the monohydroxy alcohol, 2-ethyl-1-hexanol. The amine and thiol can form hydrogen bonds weaker in strength than those of the alcohol. The combination of dielectric and shear-mechanical data enables us to reveal the presence of a relaxation mode slower than the -relaxation. This mode is analogous to the Debye mode seen in monohydroxy alcohols and demonstrates that supramolecular structures are present for systems with lower hydrogen bonding strength. We report some key features accompanying the decrease in the strength of the hydrogen bonding interactions on the relaxationdynamics close to the glass-transition. This includes changes (i) in the amplitude of the Debye and -relaxations and (ii) the separation between primary and secondary modes.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/143/18/1.4935510.html;jsessionid=RZ2y-TFdlcGQqdWmQ_BiBAlt.x-aip-live-03?itemId=/content/aip/journal/jcp/143/18/10.1063/1.4935510&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/143/18/10.1063/1.4935510&pageURL=http://scitation.aip.org/content/aip/journal/jcp/143/18/10.1063/1.4935510'
Right1,Right2,Right3,