Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/143/18/10.1063/1.4935931
1.
1.J. Hubbard, Proc. R. Soc. A 276, 238 (1963).
http://dx.doi.org/10.1098/rspa.1963.0204
2.
2.F. Gebhard, in The Mott Metal-Insulator Transition Models and Methods, edited byJ. Kühn, Th. Müller, R. D. Peccei, F. Steiner, J. Trümper, and P. Wölfle, Springer Tracts in Modern Physics Vol. 137 (Springer, Berlin, 1997), Chaps. 2 and 5.
3.
3.N. F. Mott, Rev. Mod. Phys. 40, 677 (1968).
http://dx.doi.org/10.1103/RevModPhys.40.677
4.
4.J. Zaanen, G. A. Sawatzky, and J. W. Allen, Phys. Rev. Lett. 55, 418 (1985).
http://dx.doi.org/10.1103/PhysRevLett.55.418
5.
5.R. G. Parr and R. G. Pearson, J. Am. Chem. Soc. 105, 7512 (1983).
http://dx.doi.org/10.1021/ja00364a005
6.
6.E. H. Lieb and F. Y. Wu, Phys. Rev. Lett. 20, 1445 (1968).
http://dx.doi.org/10.1103/PhysRevLett.20.1445
7.
7.W. Langer, M. Plischke, and D. Mattis, Phys. Rev. Lett. 23, 1448 (1969).
http://dx.doi.org/10.1103/PhysRevLett.23.1448
8.
8.S. M. Valone, S. R. Atlas, and M. I. Baskes, Modell. Simul. Mater. Sci. Eng. 22, 045013 (2014).
http://dx.doi.org/10.1088/0965-0393/22/4/045013
9.
9.E. H. Lieb and F. Wu, Physica A 321, 1 (2003).
http://dx.doi.org/10.1016/S0378-4371(02)01785-5
10.
10.L. Falicov and J. Kimball, Phys. Rev. Lett. 22, 997 (1969).
http://dx.doi.org/10.1103/PhysRevLett.22.997
11.
11.P. W. Anderson, Phys. Rev. 124, 41 (1961).
http://dx.doi.org/10.1103/PhysRev.124.41
12.
12.J. Yu, S. B. Sinnott, and S. R. Phillpot, Phys. Rev. B 75, 085311 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.085311
13.
13.A. C. T. van Duin, S. Dasgupta, F. Lorant, and W. A. Goddard, J. Phys. Chem. A 105, 9396 (2001).
http://dx.doi.org/10.1021/jp004368u
14.
14.A. K. Rappé and W. A. Goddard, J. Phys. Chem. 95, 3358 (1991).
http://dx.doi.org/10.1021/j100161a070
15.
15.J. Morales and T. J. Martínez, J. Phys. Chem. A 108, 3076 (2004).
http://dx.doi.org/10.1021/jp0369342
16.
16.J. A. Morales, J. Phys. Chem. A 113, 6004 (2009).
http://dx.doi.org/10.1021/jp901171c
17.
17.J. Chen and T. J. Martínez, Chem. Phys. Lett. 438, 315 (2007).
http://dx.doi.org/10.1016/j.cplett.2007.02.065
18.
18.A. P. Sutton, in Electronic Structure of Materials, Oxford Science Publications (Clarendon Press, 1993), Chap. 12.
19.
19.R. P. Iczkowski and J. L. Margrave, J. Am. Chem. Soc. 83, 3547 (1961).
http://dx.doi.org/10.1021/ja01478a001
20.
20.S. W. Rick, S. J. Stuart, and B. J. Berne, J. Chem. Phys. 101, 6141 (1994).
http://dx.doi.org/10.1063/1.468398
21.
21.R. A. Nistor, J. G. Polihronov, M. H. Müser, and N. J. Mosey, J. Chem. Phys. 125, 094108 (2006).
http://dx.doi.org/10.1063/1.2346671
22.
22.T. Verstraelen, V. V. Speybroeck, and M. Waroquier, J. Chem. Phys. 131, 044127 (2009).
http://dx.doi.org/10.1063/1.3187034
23.
23.S. M. Valone, J. Chem. Theory Comput. 7, 2253 (2011).
http://dx.doi.org/10.1021/ct200283y
24.
24.R. S. Mulliken, J. Chem. Phys. 2, 782 (1934).
http://dx.doi.org/10.1063/1.1749394
25.
25.M. J. Field, P. A. Bash, and M. Karplus, J. Comput. Chem. 11, 700 (1990).
http://dx.doi.org/10.1002/jcc.540110605
26.
26.S. M. Valone, J. Phys. Chem. Lett. 2, 2618 (2011).
http://dx.doi.org/10.1021/jz200968a
27.
27.B. v. Issendorff and O. Cheshnovsky, Annu. Rev. Phys. Chem. 56, 549 (2005).
http://dx.doi.org/10.1146/annurev.physchem.54.011002.103845
28.
28.M. B. Knickelbein, Chem. Phys. Lett. 192, 129 (1992).
http://dx.doi.org/10.1016/0009-2614(92)85440-L
29.
29.M. A. Duncan, Advances in Metal and Semiconductor Clusters, Volume 4: Cluster Materials (Elsevier Science, 1998).
30.
30.M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys. 70, 1039 (1998).
http://dx.doi.org/10.1103/RevModPhys.70.1039
31.
31.W. Moffitt, Proc. R. Soc. A 210, 245 (1951).
http://dx.doi.org/10.1098/rspa.1951.0244
32.
32.J. Zaanen, G. A. Sawatzky, and J. W. Allen, J. Magn. Magn. Mater. 54-57(2), 607 (1986).
http://dx.doi.org/10.1016/0304-8853(86)90188-5
33.
33.J. C. Slater, Phys. Rev. 35, 509 (1930).
http://dx.doi.org/10.1103/PhysRev.35.509
34.
34.L. Pauling, J. Am. Chem. Soc. 54, 3570 (1932).
http://dx.doi.org/10.1021/ja01348a011
http://aip.metastore.ingenta.com/content/aip/journal/jcp/143/18/10.1063/1.4935931
Loading
/content/aip/journal/jcp/143/18/10.1063/1.4935931
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/143/18/10.1063/1.4935931
2015-11-13
2016-12-09

Abstract

Capturing key electronic properties such as charge excitation gaps within models at or above the atomic scale presents an ongoing challenge to understanding molecular, nanoscale, and condensed phase systems. One strategy is to describe the system in terms of properties of interacting material fragments, but it is unclear how to accomplish this for charge-excitation and charge-transfer phenomena. Hamiltonian models such as the Hubbard model provide formal frameworks for analyzing gap properties but are couched purely in terms of states of electrons, rather than the states of the fragments at the scale of interest. The recently introduced Fragment Hamiltonian (FH) model uses fragments in different charge states as its building blocks, enabling a uniform, quantum-mechanical treatment that captures the charge-excitation gap. These gaps are preserved in terms of inter-fragment charge-transferhopping integrals and on-fragment parameters (FH). The FH model generalizes the standard Hubbard model (a single intra-band hopping integral and on-site repulsion ) from quantum states for electrons to quantum states for fragments. We demonstrate that even for simple two-fragment and multi-fragment systems, gap closure is enabled once exceeds the threshold set by (FH), thus providing new insight into the nature of metal-insulator transitions. This result is in contrast to the standard Hubbard model for 1d rings, for which Lieb and Wu proved that gap closure was impossible, regardless of the choices for and .

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/143/18/1.4935931.html;jsessionid=jWxZUSMHHXblbVkoTMDzVOpk.x-aip-live-06?itemId=/content/aip/journal/jcp/143/18/10.1063/1.4935931&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/143/18/10.1063/1.4935931&pageURL=http://scitation.aip.org/content/aip/journal/jcp/143/18/10.1063/1.4935931'
Right1,Right2,Right3,