Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.M. Kærn, T. C. Elston, W. J. Blake, and J. J. Collins, “Stochasticity in gene expression: From theories to phenotypes,” Nat. Rev. Genet. 6, 451464 (2005).
2.A. Eldar and M. B. Elowitz, “Functional roles for noise in genetic circuits,” Nature 467, 167173 (2010).
3.S. Huang, “Non-genetic heterogeneity of cells in development: More than just noise,” Development 136, 38533862 (2009).
4.D. R. Larson, R. H. Singer, and D. Zenklusen, “A single molecule view of gene expression,” Trends Cell Biol. 19, 630637 (2009).
5.A. Sanchez, S. Choubey, and J. Kondev, “Regulation of noise in gene expression,” Annu. Rev. Biophys. 42, 469491 (2013).
6.M. Acar, J. T. Mettetal, and A. van Oudenaarden, “Stochastic switching as a survival strategy in fluctuating environments,” Nat. Genet. 40, 471475 (2008).
7.N. Maheshri and E. K. O’Shea, “Living with noisy genes: How cells function reliably with inherent variability in gene expression,” Annu. Rev. Biophys. Biomol. Struct. 36, 413434 (2007).
8.L. T. MacNeil and A. J. Walhout, “Gene regulatory networks and the role of robustness and stochasticity in the control of gene expression,” Genome Res. 21, 645657 (2011).
9.J. Paulsson, “Summing up the noise in gene networks,” Nature 427, 415418 (2004).
10.P. Wolynes, “Gene regulation: Single-molecule chemical physics in a natural context,” inSingle Molecule Spectroscopy in Chemistry, Physics and Biology, edited by A. Gräslund, R. Rigler, J. Widengren, and P. Press (Springer, 2010), pp. 553560.
11.T. B. Kepler and T. C. Elston, “Stochasticity in transcriptional regulation: Origins, consequences, and mathematical representations,” Biophys. J. 81, 31163136 (2001).
12.I. Golding, J. Paulsson, S. M. Zawilski, and E. C. Cox, “Real-time kinetics of gene activity in individual bacteria,” Cell 123, 10251036 (2005).
13.S. Chong, C. Chen, H. Ge, and X. S. Xie, “Mechanism of transcriptional bursting in bacteria,” Cell 158, 314326 (2014).
14.D. Levens and D. R. Larson, “A new twist on transcriptional bursting,” Cell 158, 241242 (2014).
15.J. Yu, J. Xiao, X. Ren, K. Lao, and X. S. Xie, “Probing gene expression in live cells, one protein molecule at a time,” Science 311, 16001603 (2006).
16.J. M. Raser and E. K. O’Shea, “Control of stochasticity in eukaryotic gene expression,” Science 304, 18111814 (2004).
17.A. Raj, C. S. Peskin, D. Tranchina, D. Y. Vargas, and S. Tyagi, “Stochastic mrna synthesis in mammalian cells,” PLoS Biol. 4, e309 (2006).
18.D. M. Suter, N. Molina, D. Gatfield, K. Schneider, U. Schibler, and F. Naef, “Mammalian genes are transcribed with widely different bursting kinetics,” Science 332, 472474 (2011).
19.J. P. Bothma, H. G. Garcia, E. Esposito, G. Schlissel, T. Gregor, and M. Levine, “Dynamic regulation of eve stripe 2 expression reveals transcriptional bursts in living drosophila embryos,” Proc. Natl. Acad. Sci. U. S. A. 111, 1059810603 (2014).
20.D. R. Larson, D. Zenklusen, B. Wu, J. A. Chao, and R. H. Singer, “Real-time observation of transcription initiation and elongation on an endogenous yeast gene,” Science 332, 475478 (2011).
21.A. Coulon, C. C. Chow, R. H. Singer, and D. R. Larson, “Eukaryotic transcriptional dynamics: From single molecules to cell populations,” Nat. Rev. Genet. 14, 572584 (2013).
22.M. R. Roussel and J. Wang, “Phase synchronization of nonidentical light-sensitive Belousov-Zhabotinsky systems induced by variability in a high-low illumination program,” J. Phys. Chem. A 105, 73717380 (2001).
23.T. Yamada, T. Horita, K. Ouchi, and H. Fujisaka, “Stochastic model of chaotic phase synchronization. I,” Prog. Theor. Phys. 116, 819837 (2006).
24.M. B. Tarlie and R. D. Astumian, “Optimal modulation of a Brownian ratchet and enhanced sensitivity to a weak external force,” Proc. Natl. Acad. Sci. U. S. A. 95, 20392043 (1998).
25.S. L. Ginzburg and M. A. Pustovoit, “Noise-induced hypersensitivity to small time-dependent signals,” Phys. Rev. Lett. 80, 48404842 (1998).
26.R. Rozenfeld, A. Neiman, and L. Schimansky-Geier, “Stochastic resonance enhanced by dichotomic noise in a bistable system,” Phys. Rev. E 62, R3031R3034 (2000).
27.R. Mankin, A. Sauga, A. Ainsaar, A. Haljas, and K. Paunel, “Colored-noise-induced discontinuous transitions in symbiotic ecosystems,” Phys. Rev. E 69, 061106 (2004).
28.D. Das and D. S. Ray, “Dichotomous-noise-induced pattern formation in a reaction–diffusion system,” Phys. Rev. E 87, 062924 (2013).
29.J. Buceta and K. Lindenberg, “Spatial patterns induced purely by dichotomous disorder,” Phys. Rev. E 68, 011103 (2003).
30.D. T. Gillespie, “Stochastic simulation of chemical kinetics,” Annu. Rev. Phys. Chem. 58, 3555 (2007).
31.H. H. McAdams and A. Arkin, “Stochastic mechanisms in gene expression,” Proc. Natl. Acad. Sci. U. S. A. 94, 814819 (1997).
32.J. Elf and M. Ehrenberg, “Fast evaluation of fluctuations in biochemical networks with the linear noise approximation,” Genome Res. 13, 24752484 (2003).
33.N. G. Van Kampen, Stochastic Processes in Physics and Chemistry (Elsevier, 2011).
34.D. A. Potoyan and P. G. Wolynes, “On the dephasing of genetic oscillators,” Proc. Natl. Acad. Sci. U. S. A. 111, 23912396 (2014).
35.M. Sasai and P. G. Wolynes, “Stochastic gene expression as a many-body problem,” Proc. Natl. Acad. Sci. U. S. A. 100, 23742379 (2003).
36.J. Newby, “Bistable switching asymptotics for the self regulating gene,” J. Phys. A 48, 185001 (2015); preprint arXiv:1407.4344 (2014).
37.J. Newby, “Asymptotic and numerical methods for metastable events in stochastic gene networks,” preprint arXiv:1412.8446 (2014).
38.O. Radulescu, A. N. Gorban, A. Zinovyev, and V. Noel, “Reduction of dynamical biochemical reaction networks in computational biology,” Front Genet. 3, 131 (2012); preprint arXiv:1205.2851 (2012).
39.B. Zhang and P. G. Wolynes, “Stem cell differentiation as a many-body problem,” Proc. Natl. Acad. Sci. U. S. A. 111, 1018510190 (2014).
40.M. Lu, J. Onuchic, and E. Ben-Jacob, “Construction of an effective landscape for multistate genetic switches,” Phys. Rev. Lett. 113, 078102 (2014).
41.M. Assaf, E. Roberts, and Z. Luthey-Schulten, “Determining the stability of genetic switches: Explicitly accounting for mrna noise,” Phys. Rev. Lett. 106, 248102 (2011).
42.E. Aurell and K. Sneppen, “Epigenetics as a first exit problem,” Phys. Rev. Lett. 88, 048101 (2002).
43.H. Ge, H. Qian, and X. S. Xie, “Stochastic phenotype transition of a single cell in an intermediate region of gene state switching,” Phys. Rev. Lett. 114, 078101 (2015).
44.J. Hornos, D. Schultz, G. Innocentini, J. Wang, A. Walczak, J. Onuchic, and P. Wolynes, “Self-regulating gene: An exact solution,” Phys. Rev. E 72, 051907 (2005).
45.R. Grima, D. Schmidt, and T. Newman, “Steady-state fluctuations of a genetic feedback loop: An exact solution,” J. Chem. Phys. 137, 035104 (2012).
46.A. M. Walczak, J. N. Onuchic, and P. G. Wolynes, “Absolute rate theories of epigenetic stability,” Proc. Natl. Acad. Sci. U. S. A. 102, 1892618931 (2005).
47.P.-Z. Shi and H. Qian, “A perturbation analysis of rate theory of self-regulating genes and signaling networks,” J. Chem. Phys. 134, 065104 (2011).
48.H. Feng, B. Han, and J. Wang, “Adiabatic and non-adiabatic non-equilibrium stochastic dynamics of single regulating genes,” J. Chem. Phys. B 115, 12541261 (2010).
49.N. Kumar, T. Platini, and R. V. Kulkarni, “Exact distributions for stochastic gene expression models with bursting and feedback,” Phys. Rev. Lett. 113, 268105 (2014).
50.R. Grima, P. Thomas, and A. V. Straube, “How accurate are the nonlinear chemical Fokker-Planck and chemical langevin equations?,” J. Chem. Phys. 135, 084103 (2011).
51.H. Hara and Y. Kurokawa, “A model of coupled diffusion processes described by generalized random walks,” Appl. Math. Modell. 6, 386389 (1982).
52.Q. Min and Z. Biao, “Multi-dimensional coupled diffusion process,” Acta Math. Appl. Sin. 1, 168179 (1984).
53.H. Qian, “The mathematical theory of molecular motor movement and chemomechanical energy transduction,” J. Math. Chem. 27, 219234 (2000).
54.Y. Tang, R. Yuan, and P. Ao, “Summing over trajectories of stochastic dynamics with multiplicative noise,” J. Chem. Phys. 141, 044125 (2014).
55.W. Horsthemke, Noise Induced Transitions (Springer, 1984).
56.H.-W. Kang, T. G. Kurtz et al., “Separation of time-scales and model reduction for stochastic reaction networks,” Ann. Appl. Probab. 23, 529583 (2013).
57.A. Crudu, A. Debussche, and O. Radulescu, “Hybrid stochastic simplifications for multiscale gene networks,” BMC Syst. Biol. 3, 89 (2009).
58.P. Bokes, J. R. King, A. T. Wood, and M. Loose, “Transcriptional bursting diversifies the behaviour of a toggle switch: Hybrid simulation of stochastic gene expression,” Bull. Math. Biol. 75, 351371 (2013).
59.H. Salis and Y. Kaznessis, “Accurate hybrid stochastic simulation of a system of coupled chemical or biochemical reactions,” J. Chem. Phys. 122, 054103 (2005).
60.E. L. Haseltine and J. B. Rawlings, “On the origins of approximations for stochastic chemical kinetics,” J. Chem. Phys. 123, 164115 (2005).
61.R. Karmakar and I. Bose, “Graded and binary responses in stochastic gene expression,” Phys. Biol. 1, 197214 (2004).
62.S. Zeiser, U. Franz, J. Müller, and V. Liebscher, “Hybrid modeling of noise reduction by a negatively autoregulated system,” Bull. Math. Biol. 71, 10061024 (2009).
63.A. Alfonsi, E. Cancès, G. Turinici, B. Di Ventura, W. Huisinga et al., “Exact simulation of hybrid stochastic and deterministic models for biochemical systems,” Biophys. J. RR-5435, 20 (2004).
64.T. M. Cover and J. A. Thomas, Elements of Information Theory (John Wiley & Sons, 2012).
65.H. Qian, P.-Z. Shi, and J. Xing, “Stochastic bifurcation, slow fluctuations, and bistability as an origin of biochemical complexity,” Phys. Chem. Chem. Phys. 11, 48614870 (2009).
66.M. Strasser, F. J. Theis, and C. Marr, “Stability and multiattractor dynamics of a toggle switch based on a two-stage model of stochastic gene expression,” Biophys. J. 102, 1929 (2012).
67.C. Marr, M. Strasser, M. Schwarzfischer, T. Schroeder, and F. J. Theis, “Multi-scale modeling of gmp differentiation based on single-cell genealogies,” FEBS J. 279, 34883500 (2012).
68.F. Képès, “Periodic transcriptional organization of the E. coli genome,” J. Mol. Biol. 340, 957964 (2004).
69.G. Kolesov, Z. Wunderlich, O. N. Laikova, M. S. Gelfand, and L. A. Mirny, “How gene order is influenced by the biophysics of transcription regulation,” Proc. Natl. Acad. Sci. U. S. A. 104, 1394813953 (2007).
70.O. Pulkkinen and R. Metzler, “Distance matters: The impact of gene proximity in bacterial gene regulation,” Phys. Rev. Lett. 110, 198101 (2013).
71.T. E. Kuhlman and E. C. Cox, “Gene location and dna density determine transcription factor distributions in escherichia coli,” Mol. Syst. Biol. 8, 610 (2012).
72.T. Kühn, T. O. Ihalainen, J. Hyväluoma, N. Dross, and S. F. Willman, “Protein diffusion in mammalian cell cytoplasm,” PLoS One 6, e22962 (2011).
73.B. P. English, V. Hauryliuk, A. Sanamrad, S. Tankov, N. H. Dekker, and J. Elf, “Single-molecule investigations of the stringent response machinery in living bacterial cells,” Proc. Natl. Acad. Sci. U. S. A. 108, E365E373 (2011).
74.C. R. Brown, C. Mao, E. Falkovskaia, M. S. Jurica, and H. Boeger, “Linking stochastic fluctuations in chromatin structure and gene expression,” PLoS Biol. 11, e1001621 (2013).

Data & Media loading...


Article metrics loading...



Molecular noise in gene regulatory networks has two intrinsic components, one part being due to fluctuations caused by the birth and death of protein or mRNA molecules which are often present in small numbers and the other part arising from gene state switching, a single molecule event. Stochastic dynamics of gene regulatory circuits appears to be largely responsible for bifurcations into a set of multi-attractor states that encode different cell phenotypes. The interplay of dichotomous single molecule gene noise with the nonlinear architecture of genetic networks generates rich and complex phenomena. In this paper, we elaborate on an approximate framework that leads to simple hybrid multi-scale schemes well suited for the quantitative exploration of the steady state properties of large-scale cellular genetic circuits. Through a path sum based analysis of trajectory statistics, we elucidate the connection of these hybrid schemes to the underlying master equation and provide a rigorous justification for using dichotomous noise based models to study genetic networks. Numerical simulations of circuit models reveal that the contribution of the genetic noise of single molecule origin to the total noise is significant for a wide range of kinetic regimes.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd