Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/143/19/10.1063/1.4935701
1.
1.A. Sen and A. Kohen, J. Phys. Org. Chem. 23, 613 (2010).
http://dx.doi.org/10.1002/poc.1633
2.
2.S. Ramazani, J. Chem. Phys. 138, 194305 (2013).
http://dx.doi.org/10.1063/1.4803862
3.
3.M. H. M. Olsson, P. E. M. Siegbahn, and A. Warshel, J. Am. Chem. Soc. 126, 2820 (2004).
http://dx.doi.org/10.1021/ja037233l
4.
4.S. T. Banks and D. C. Clary, Phys. Chem. Chem. Phys. 9, 933 (2007).
http://dx.doi.org/10.1039/b615460c
5.
5.J. W. Allen, W. H. Green, Y. Li, H. Guo, and Y. V. Suleimanov, J. Chem. Phys. 138, 221103 (2013).
http://dx.doi.org/10.1063/1.4811329
6.
6.N. F. Hansen and H. C. Andersen, J. Chem. Phys. 101, 6032 (1994).
http://dx.doi.org/10.1063/1.467318
7.
7.E. Pollak, J. Phys. Chem. B 116, 12966 (2012).
http://dx.doi.org/10.1021/jp307556j
8.
8.W. H. Miller, Y. Zhao, M. Ceotto, and S. Yang, J. Chem. Phys. 119, 1329 (2003).
http://dx.doi.org/10.1063/1.1580110
9.
9.W. H. Miller, J. Chem. Phys. 61, 1823 (1974).
http://dx.doi.org/10.1063/1.1682181
10.
10.S. Chapman, B. C. Garrett, and W. H. Miller, J. Chem. Phys. 63, 2710 (1975).
http://dx.doi.org/10.1063/1.431620
11.
11.W. H. Miller, S. D. Schwartz, and J. W. Tromp, J. Chem. Phys. 79, 4889 (1983).
http://dx.doi.org/10.1063/1.445581
12.
12.M. Ceotto, Mol. Phys. 110, 547 (2012).
http://dx.doi.org/10.1080/00268976.2012.663943
13.
13.Y. Zhao, T. Yamamoto, and W. H. Miller, J. Chem. Phys. 120, 3100 (2004).
http://dx.doi.org/10.1063/1.1641006
14.
14.M. Ceotto and W. H. Miller, J. Chem. Phys. 120, 6356 (2004).
http://dx.doi.org/10.1063/1.1666064
15.
15.W. Wang, S. Feng, and Y. Zhao, J. Chem. Phys. 126, 114307 (2007).
http://dx.doi.org/10.1063/1.2714510
16.
16.W. Wang and Y. Zhao, J. Chem. Phys. 130, 114708 (2009).
http://dx.doi.org/10.1063/1.3097132
17.
17.W. Wang and Y. Zhao, Phys. Chem. Chem. Phys. 13, 19362 (2011).
http://dx.doi.org/10.1039/c1cp22255d
18.
18.W. Wang and Y. Zhao, J. Chem. Phys. 137, 214306 (2012).
http://dx.doi.org/10.1063/1.4768874
19.
19.T. Yamamoto and W. H. Miller, J. Chem. Phys. 120, 3086 (2004).
http://dx.doi.org/10.1063/1.1641005
20.
20.J. Vaníček, W. H. Miller, J. F. Castillo, and F. J. Aoiz, J. Chem. Phys. 123, 054108 (2005).
http://dx.doi.org/10.1063/1.1946740
21.
21.S. Jang, S. Jang, and G. A. Voth, J. Chem. Phys. 115, 7832 (2001).
http://dx.doi.org/10.1063/1.1410117
22.
22.T. Yamamoto, J. Chem. Phys. 123, 104101 (2005).
http://dx.doi.org/10.1063/1.2013257
23.
23.A. Pérez and M. E. Tuckerman, J. Chem. Phys. 135, 064104 (2011).
http://dx.doi.org/10.1063/1.3609120
24.
24.M. Buchowiecki and J. Vaníček, Chem. Phys. Lett. 588, 11 (2013).
http://dx.doi.org/10.1016/j.cplett.2013.09.070
25.
25.O. Marsalek, P.-Y. Chen, R. Dupuis, M. Benoit, M. Méheut, Z. Bačić, and M. E. Tuckerman, J. Chem. Theory Comput. 10, 1440 (2014).
http://dx.doi.org/10.1021/ct400911m
26.
26.H. Engel, R. Eitan, A. Azuri, and D. T. Major, Chem. Phys. 450-451, 95 (2015).
http://dx.doi.org/10.1016/j.chemphys.2015.01.001
27.
27.S. Yang, T. Yamamoto, and W. H. Miller, J. Chem. Phys. 124, 084102 (2006).
http://dx.doi.org/10.1063/1.2171693
28.
28.J. Vaníček and W. H. Miller, J. Chem. Phys. 127, 114309 (2007).
http://dx.doi.org/10.1063/1.2768930
29.
29.J. Pu and D. G. Truhlar, J. Chem. Phys. 117, 10675 (2002).
http://dx.doi.org/10.1063/1.1518471
30.
30.G. C. Schatz, A. F. Wagner, and T. H. Dunning, Jr., J. Phys. Chem. 88, 221 (1984).
http://dx.doi.org/10.1021/j150646a013
31.
31.B. Kerkeni and D. C. Clary, J. Phys. Chem. A 108, 8966 (2004).
http://dx.doi.org/10.1021/jp048440q
32.
32.Y. Li, Y. V. Suleimanov, J. Li, W. H. Green, and H. Guo, J. Chem. Phys. 138, 094307 (2013).
http://dx.doi.org/10.1063/1.4793394
33.
33.M. Ceotto and W. H. Miller, private communication (2004).
34.
34.R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, 1965).
35.
35.D. Chandler and P. G. Wolynes, J. Chem. Phys. 74, 4078 (1981).
http://dx.doi.org/10.1063/1.441588
36.
36.M. Takahashi and M. Imada, J. Phys. Soc. Jpn. 53, 963 (1984).
http://dx.doi.org/10.1143/JPSJ.53.963
37.
37.S. A. Chin, Phys. Lett. A 226, 344 (1997).
http://dx.doi.org/10.1016/S0375-9601(97)00003-0
38.
38.M. Suzuki, Phys. Lett. A 201, 425 (1995).
http://dx.doi.org/10.1016/0375-9601(95)00266-6
39.
39.T. Zimmermann and J. Vaníček, J. Chem. Phys. 131, 024111 (2009).
http://dx.doi.org/10.1063/1.3167353
40.
40.A. Perez and O. A. von Lilienfeld, J. Chem. Theory Comput. 7, 2358 (2011).
http://dx.doi.org/10.1021/ct2000556
41.
41.M. Ceriotti and T. E. Markland, J. Chem. Phys. 138, 014112 (2013).
http://dx.doi.org/10.1063/1.4772676
42.
42.B. Cheng and M. Ceriotti, J. Chem. Phys. 141, 244112 (2014).
http://dx.doi.org/10.1063/1.4904293
43.
43.M. F. Herman, E. J. Bruskin, and B. J. Berne, J. Chem. Phys. 76, 5150 (1982).
http://dx.doi.org/10.1063/1.442815
44.
44.M. Parrinello and A. Rahman, J. Chem. Phys. 80, 860 (1984).
http://dx.doi.org/10.1063/1.446740
45.
45.C. Predescu and J. D. Doll, J. Chem. Phys. 117, 7448 (2002).
http://dx.doi.org/10.1063/1.1509058
46.
46.M. Sprik, M. L. Klein, and D. Chandler, Phys. Rev. B 31, 4234 (1985).
http://dx.doi.org/10.1103/PhysRevB.31.4234
47.
47.M. Sprik, M. L. Klein, and D. Chandler, Phys. Rev. B 32, 545 (1985).
http://dx.doi.org/10.1103/PhysRevB.32.545
48.
48.M. E. Tuckerman, B. J. Berne, G. J. Martyna, and M. L. Klein, J. Chem. Phys. 99, 2796 (1993).
http://dx.doi.org/10.1063/1.465188
49.
49.A. I. Boothroyd, W. J. Keogh, P. G. Martin, and M. R. Peterson, J. Chem. Phys. 104, 7139 (1996).
http://dx.doi.org/10.1063/1.471430
50.
50.H. Flyvbjerg and H. G. Petersen, J. Chem. Phys. 91, 461 (1989).
http://dx.doi.org/10.1063/1.457480
51.
51. Note that the 1% error for ΔH translates into a 2% error for ΔH2 and that 1% relative error for Qr and Cdd ratios translate into 0.01 absolute error for ∂lnQr/∂λ and ∂lnCdd/∂λ. As for , as will be shown later, when we calculate the KIE ⋅H + H2/ ⋅ D + D2 at T = 200 K with a properly optimized DS, is integrated over an interval of the length 0.59 a.u., implying that the target error should be 0.01/0.59 (a.u.)−1.
52.
52. Since thermodynamic estimators were used in Ref. 19, reducing the discretization error directly using very large P was not feasible—increasing P not only decreased discretization error, but also increased the statistical error. Introducing virial estimators for each relevant quantity allows avoiding this issue because it permits improving convergence with respect to P without encountering problems with statistical error.
53.
53.S. A. Chin and C. R. Chen, J. Chem. Phys. 117, 1409 (2002).
http://dx.doi.org/10.1063/1.1485725
54.
54.S. A. Chin, Phys. Rev. E 69, 046118 (2004).
http://dx.doi.org/10.1103/PhysRevE.69.046118
55.
55.M. Ceriotti, G. A. R. Brain, O. Riordan, and D. E. Manolopoulos, Proc. R. Soc. A 468, 2 (2012).
http://dx.doi.org/10.1098/rspa.2011.0413
56.
56.X. Zhang, B. J. Braams, and J. M. Bowman, J. Chem. Phys. 124, 021104 (2006).
http://dx.doi.org/10.1063/1.2162532
57.
57.H. Eyring, J. Chem. Phys. 3, 107 (1935).
http://dx.doi.org/10.1063/1.1749604
58.
58.M. G. Evans and M. Polanyi, Trans. Faraday Soc. 31, 875 (1935).
http://dx.doi.org/10.1039/tf9353100875
59.
59.B. H. Mahan, J. Chem. Educ. 51, 709 (1974).
http://dx.doi.org/10.1021/ed051p709
60.
60.E. Wigner, Z. Phys. Chem. Abt. B 19, 203 (1932).
61.
61.M. J. Kurylo, G. A. Hollinden, and R. B. Timmons, J. Chem. Phys. 52, 1773 (1970).
http://dx.doi.org/10.1063/1.1673216
62.
62.J. S. Shapiro and R. E. Weston, J. Phys. Chem. 76, 1669 (1972).
http://dx.doi.org/10.1021/j100656a001
63.
63.W. Tsang and R. F. Hampson, J. Phys. Chem. Ref. Data 15, 1087 (1986).
http://dx.doi.org/10.1063/1.555759
64.
64.J. Kerr and J. Parsonage, Evaluated Kinetic Data on Gas Phase Hydrogen Transfer Reactions of Methyl Radicals (Butterworths, 1976).
65.
65.D. G. Truhlar, D. Hong Lu, S. C. Tucker, X. G. Zhao, A. Gonzalez-Lafont, T. N. Truong, D. Maurice, Y.-P. Liu, and G. C. Lynch, “Variational transition-state theory with multidimensional, semiclassical, ground-state transmission coefficients,” in Isotope Effects in Gas-Phase Chemistry, edited by J. A. Kaye (American Chemical Society, Washington, DC, 1992), Chap. 2, pp. 1636.
66.
66.J. Espinosa-García and J. C. Corchado, J. Phys. Chem. 100, 16561 (1996).
http://dx.doi.org/10.1021/jp961608q
67.
67.J. C. Corchado, J. L. Bravo, and J. Espinosa-Garcia, J. Chem. Phys. 130, 184314 (2009).
http://dx.doi.org/10.1063/1.3132223
68.
68.W. K. den Otter, J. Chem. Phys. 112, 7283 (2000).
http://dx.doi.org/10.1063/1.481329
http://aip.metastore.ingenta.com/content/aip/journal/jcp/143/19/10.1063/1.4935701
Loading
/content/aip/journal/jcp/143/19/10.1063/1.4935701
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/143/19/10.1063/1.4935701
2015-11-19
2016-12-09

Abstract

Path integral implementation of the quantum instanton approximation currently belongs among the most accurate methods for computing quantum rate constants and kinetic isotope effects, but its use has been limited due to the rather high computational cost. Here, we demonstrate that the efficiency of quantum instanton calculations of the kinetic isotope effects can be increased by orders of magnitude by combining two approaches: The convergence to the quantum limit is accelerated by employing high-order path integral factorizations of the Boltzmann operator, while the statistical convergence is improved by implementing virial estimators for relevant quantities. After deriving several new virial estimators for the high-order factorization and evaluating the resulting increase in efficiency, using ⋅H + HH → HH + ⋅ H reaction as an example, we apply the proposed method to obtain several kinetic isotope effects on CH + ⋅ H ⇌ ⋅ CH + H forward and backward reactions.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/143/19/1.4935701.html;jsessionid=URAN5T0zgIxdXBQwrEfWFB72.x-aip-live-03?itemId=/content/aip/journal/jcp/143/19/10.1063/1.4935701&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/143/19/10.1063/1.4935701&pageURL=http://scitation.aip.org/content/aip/journal/jcp/143/19/10.1063/1.4935701'
Right1,Right2,Right3,