Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/143/19/10.1063/1.4935799
1.
1.Classical and Quantum Dynamics in Condensed Phase Simulations, edited by B. J. Berne, G. Ciccotti, and D. F. Coker (World Scientific, NJ, 1998).
2.
2.V. May and O. Kühn, Charge and Energy Transfer Dynamics in Molecular Systems, 3rd ed. (Wiley-VCH, Weinheim, 2011).
3.
3.W. T. Pollard, A. K. Felts, and R. A. Friesner, Adv. Chem. Phys. 93, 77 (1996).
http://dx.doi.org/10.1002/9780470141526.ch3
4.
4.R. Zwanzig, Nonequilibrium Statistical Mechanics (Oxford University Press, New York, 2001).
5.
5.H. P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, New York, 2002).
6.
6.U. Weiss, Quantum Dissipative Systems, 3rd ed. (World Scientific, London, 2008).
7.
7.S. Nakajima, Prog. Theor. Phys. 20, 948 (1958).
http://dx.doi.org/10.1143/PTP.20.948
8.
8.R. Zwanzig, Annu. Rev. Phys. Chem. 16, 67 (1965).
http://dx.doi.org/10.1146/annurev.pc.16.100165.000435
9.
9.H. Mori, Prog. Theor. Phys. 33, 423 (1965).
http://dx.doi.org/10.1143/PTP.33.423
10.
10.N. Hashitsume, F. Shibata, and M. Shingū, J. Stat. Phys. 17, 155 (1977).
http://dx.doi.org/10.1007/BF01040099
11.
11.F. Shibata, Y. Takahashi, and N. Hashitsume, J. Stat. Phys. 17, 171 (1977).
http://dx.doi.org/10.1007/BF01040100
12.
12.H. Grabert, Projection Operator Techniques in Nonequilibrium Statistical Mechanics (Springer-Verlag, Berlin, 1982).
13.
13.R. P. Feynman and F. L. Vernon, Jr., Ann. Phys. 24, 118 (1963).
http://dx.doi.org/10.1016/0003-4916(63)90068-X
14.
14.H. Grabert, P. Schramm, and G. L. Ingold, Phys. Rep. 168, 115 (1988).
http://dx.doi.org/10.1016/0370-1573(88)90023-3
15.
15.R. Zwanzig, Lect. Theor. Phys. 3, 106 (1960).
16.
16.Q. Shi and E. Geva, J. Chem. Phys. 119, 12063 (2003).
http://dx.doi.org/10.1063/1.1624830
17.
17.G. J. Nan, Q. Shi, and Z. G. Shuai, J. Chem. Phys. 130, 134106 (2009).
http://dx.doi.org/10.1063/1.3108521
18.
18.G. Cohen and E. Rabani, Phys. Rev. B 84, 075150 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.075150
19.
19.R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965).
20.
20.B. J. Berne and D. Thirumalai, Annu. Rev. Phys. Chem. 37, 401 (1986).
http://dx.doi.org/10.1146/annurev.pc.37.100186.002153
21.
21.D. M. Ceperley, Rev. Mod. Phys. 67, 279 (1995).
http://dx.doi.org/10.1103/RevModPhys.67.279
22.
22.E. Rabani, D. R. Reichman, G. Kryloc, and B. J. Berne, Proc. Natl. Acad. Sci. U. S. A. 99, 1129 (2002).
http://dx.doi.org/10.1073/pnas.261540698
23.
23.M. Ceotto, S. Yang, and W. H. Miller, J. Chem. Phys. 122, 044109 (2005).
http://dx.doi.org/10.1063/1.1839177
24.
24.G.-J. Nan, Q. Shi, Z.-G. Shuai, and Z.-S. Li, Phys. Chem. Chem. Phys. 13, 9736 (2011).
http://dx.doi.org/10.1039/c1cp00001b
25.
25.L. Z. Song and Q. Shi, J. Chem. Phys. 142, 174103 (2015).
http://dx.doi.org/10.1063/1.4919061
26.
26.J. Cao and G. A. Voth, J. Chem. Phys. 100, 5106 (1994).
http://dx.doi.org/10.1063/1.467176
27.
27.G. A. Voth, Adv. Chem. Phys. 93, 135 (1996).
http://dx.doi.org/10.1002/9780470141526.ch4
28.
28.I. R. Craig and D. E. Manolopoulos, J. Chem. Phys. 121, 3368 (2004).
http://dx.doi.org/10.1063/1.1777575
29.
29.S. Habershon, D. E. Manolopoulos, T. E. Markland, and T. F. Miller, Annu. Rev. Phys. Chem. 64, 387 (2013).
http://dx.doi.org/10.1146/annurev-physchem-040412-110122
30.
30.R. Egger and C. H. Mak, Phys. Rev. B 50, 15210 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.15210
31.
31.N. Makri, J. Math. Phys. 36, 2430 (1995).
http://dx.doi.org/10.1063/1.531046
32.
32.J. Cao, L. W. Ungar, and G. A. Voth, J. Chem. Phys. 104, 4189 (1996).
http://dx.doi.org/10.1063/1.471230
33.
33.N. Makri and D. E. Makarov, J. Chem. Phys. 102, 4600 (1995).
http://dx.doi.org/10.1063/1.469508
34.
34.M. Thorwart, P. Reimann, and P. Hänggi, Phys. Rev. E 62, 5808 (2000).
http://dx.doi.org/10.1103/PhysRevE.62.5808
35.
35.A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. Fisher, A. Garg, and W. Zwerger, Rev. Mod. Phys. 59, 1 (1987).
http://dx.doi.org/10.1103/RevModPhys.59.1
36.
36.J. T. Stockburger and H. Grabert, Phys. Rev. Lett. 88, 170407 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.170407
37.
37.J. T. Stockburger, Chem. Phys. 296, 159 (2004).
http://dx.doi.org/10.1016/j.chemphys.2003.09.014
38.
38.Y. Yan, F. Yang, Y. Liu, and J. Shao, Chem. Phys. Lett. 395, 216 (2004).
http://dx.doi.org/10.1016/j.cplett.2004.07.036
39.
39.J. M. Moix, J. Ma, and J. Cao, J. Chem. Phys. 142, 094108 (2015).
http://dx.doi.org/10.1063/1.4908601
40.
40.Y. Tanimura and R. K. Kubo, J. Phys. Soc. Jpn. 58, 101 (1989).
http://dx.doi.org/10.1143/JPSJ.58.101
41.
41.Y. Tanimura, Phys. Rev. A 41, 6676 (1990).
http://dx.doi.org/10.1103/PhysRevA.41.6676
42.
42.A. Ishizaki and Y. Tanimura, J. Phys. Soc. Jpn. 74, 3131 (2005).
http://dx.doi.org/10.1143/JPSJ.74.3131
43.
43.R.-X. Xu, P. Cui, X.-Q. Li, Y. Mo, and Y.-J. Yan, J. Chem. Phys. 122, 041103 (2005).
http://dx.doi.org/10.1063/1.1850899
44.
44.Y. Tanimura, J. Phys. Soc. Jpn. 75, 082001 (2006).
http://dx.doi.org/10.1143/JPSJ.75.082001
45.
45.J. S. Jin, X. Zheng, and Y. J. Yan, J. Chem. Phys. 128, 234703 (2008).
http://dx.doi.org/10.1063/1.2938087
46.
46.Q. Shi, L. P. Chen, G. J. Nan, R. X. Xu, and Y. J. Yan, J. Chem. Phys. 130, 084105 (2009).
http://dx.doi.org/10.1063/1.3077918
47.
47.J. Hu, M. Luo, F. Jiang, R. X. Xu, and Y. J. Yan, J. Chem. Phys. 134, 244106 (2011).
http://dx.doi.org/10.1063/1.3602466
48.
48.L.-L. Zhu, H. Liu, and Q. Shi, New J. Phys. 15, 095020 (2013).
http://dx.doi.org/10.1088/1367-2630/15/9/095020
49.
49.H. Liu, L. Zhu, S. Bai, and Q. Shi, J. Chem. Phys. 140, 134106 (2014).
http://dx.doi.org/10.1063/1.4870035
50.
50.D. A. McQuarrie, Statistical Mechanics (Harper and Row, New York, 1976).
51.
51.R. Kubo, M. Toda, and N. Hashitsume, Statistical Physics II—Nonequilibrium Statistical Mechanics (Springer-Verlag, Berlin, 1983).
52.
52.W. H. Miller, S. D. Schwartz, and J. W. Tromp, J. Chem. Phys. 79, 4889 (1983).
http://dx.doi.org/10.1063/1.445581
53.
53.M. Topaler and N. Makri, J. Chem. Phys. 101, 7500 (1994).
http://dx.doi.org/10.1063/1.468244
54.
54.G. Mahan, Many-Particle Physics (Plenum Press, London, 1990).
55.
55.Y.-Y. Jing, L.-P. Chen, S.-M. Bai, and Q. Shi, J. Chem. Phys. 138, 045101 (2013).
http://dx.doi.org/10.1063/1.4775843
56.
56.Y.-C. Cheng and G. R. Fleming, Annu. Rev. Phys. Chem. 60, 241 (2009).
http://dx.doi.org/10.1146/annurev.physchem.040808.090259
57.
57.L.-P. Chen, R.-H. Zheng, Y.-Y. Jing, and Q. Shi, J. Chem. Phys. 134, 194508 (2011).
http://dx.doi.org/10.1063/1.3589982
58.
58.A. Ishizaki and G. R. Fleming, Annu. Rev. Condens. Matter Phys. 3, 333 (2012).
http://dx.doi.org/10.1146/annurev-conmatphys-020911-125126
59.
59.S. M. Bai, K. Song, and Q. Shi, J. Phys. Chem. Lett. 6, 1954 (2015).
http://dx.doi.org/10.1021/acs.jpclett.5b00690
60.
60.A. Ishizaki and Y. Tanimura, J. Chem. Phys. 125, 084501 (2006).
http://dx.doi.org/10.1063/1.2244558
61.
61.Y. Tanimura, J. Chem. Phys. 141, 044114 (2014).
http://dx.doi.org/10.1063/1.4890441
62.
62.D. E. Makarov and N. Makri, Chem. Phys. Lett. 221, 482 (1994).
http://dx.doi.org/10.1016/0009-2614(94)00275-4
63.
63.N. Makri and D. E. Makarov, J. Chem. Phys. 102, 4611 (1995).
http://dx.doi.org/10.1063/1.469509
64.
64.C. H. Mak and R. Egger, Adv. Chem. Phys. 93, 39 (1996).
http://dx.doi.org/10.1002/9780470141526.ch2
65.
65.J. M. Moix and J. Cao, J. Chem. Phys. 139, 134106 (2013).
http://dx.doi.org/10.1063/1.4822043
66.
66.D. Suess, A. Eisfeld, and W. T. Strunz, Phys. Rev. Lett. 113, 150403 (2014).
http://dx.doi.org/10.1103/PhysRevLett.113.150403
67.
67.J. M. Moix, Y. Zhao, and J. Cao, Phys. Rev. B 85, 115412 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.115412
68.
68.T. Holstein, Ann. Phys. (N.Y.) 8, 325 (1959).
http://dx.doi.org/10.1016/0003-4916(59)90002-8
69.
69.T. Holstein, Ann. Phys. (N.Y.) 8, 343 (1959).
http://dx.doi.org/10.1016/0003-4916(59)90003-X
70.
70.F. X. Vázquez, I. Navrotskaya, and E. Geva, J. Phys. Chem. A 114, 5682 (2010).
http://dx.doi.org/10.1021/jp1010499
71.
71.S. Fratini and S. Ciuchi, Phys. Rev. Lett. 91, 256403 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.256403
72.
72.A. Troisi and G. Orlandi, Phys. Rev. Lett. 96, 086601 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.086601
73.
73.L. Wang and D. Beljonne, J. Phys. Chem. Lett. 4, 1888 (2013).
http://dx.doi.org/10.1021/jz400871j
74.
74.A. S. Mishchenko, N. Nagaosa, G. De Filippis, A. de Candia, and V. Cataudella, Phys. Rev. Lett. 114, 146401 (2015).
http://dx.doi.org/10.1103/PhysRevLett.114.146401
75.
75.R. Silbey and R. W. Munn, J. Chem. Phys. 72, 2763 (1980).
http://dx.doi.org/10.1063/1.439425
76.
76.R. W. Munn and R. Silbey, J. Chem. Phys. 83, 1854 (1985).
http://dx.doi.org/10.1063/1.449373
77.
77.V. M. Kenkre, J. D. Andersen, D. H. Dunlap, and C. B. Duke, Phys. Rev. Lett. 62, 1165 (1989).
http://dx.doi.org/10.1103/PhysRevLett.62.1165
78.
78.K. Hannewald and P. A. Bobbert, Appl. Phys. Lett. 85, 1535 (2004).
http://dx.doi.org/10.1063/1.1776335
79.
79.L. Wang, D. Beljonne, L. Chen, and Q. Shi, J. Chem. Phys. 134, 244116 (2011).
http://dx.doi.org/10.1063/1.3604561
80.
80.V. Coropceanu, J. Cornil, D. A. da Silva Filho, Y. Oliver, R. Silbey, and J. L. Brédas, Chem. Rev. 107, 926 (2007).
http://dx.doi.org/10.1021/cr050140x
http://aip.metastore.ingenta.com/content/aip/journal/jcp/143/19/10.1063/1.4935799
Loading
/content/aip/journal/jcp/143/19/10.1063/1.4935799
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/143/19/10.1063/1.4935799
2015-11-20
2016-12-07

Abstract

Based on recent findings in the hierarchical equations of motion (HEOM) for correlated initial state [Y. Tanimura, J. Chem. Phys. , 044114 (2014)], we propose a new stochastic method to obtain the initial conditions for the real time HEOM propagation, which can be used further to calculate the equilibrium correlation functions and symmetrized correlation functions. The new method is derived through stochastic unraveling of the imaginary time influence functional, where a set of stochastic imaginary time HEOM are obtained. The validity of the new method is demonstrated using numerical examples including the spin-Boson model, and the Holstein model with undamped harmonic oscillator modes.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/143/19/1.4935799.html;jsessionid=91rstokiqbekl_W9mFlSNYQ0.x-aip-live-02?itemId=/content/aip/journal/jcp/143/19/10.1063/1.4935799&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/143/19/10.1063/1.4935799&pageURL=http://scitation.aip.org/content/aip/journal/jcp/143/19/10.1063/1.4935799'
Right1,Right2,Right3,